首页> 美国卫生研究院文献>Polymers >The Effects of Magnetic Field Alignment on Lithium Ion Transport in a Polymer Electrolyte Membrane with Lamellar Morphology
【2h】

The Effects of Magnetic Field Alignment on Lithium Ion Transport in a Polymer Electrolyte Membrane with Lamellar Morphology

机译:层状形态在聚合物电解质膜中磁场取向对锂离子迁移的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The transport properties of block copolymer-derived polymer electrolyte membranes (PEMs) are sensitive to microstructural disorder originating in the randomly oriented microdomains produced during uncontrolled self-assembly by microphase separation. This microstructural disorder can negatively impact performance due to the presence of conductivity-impeding grain boundaries and the resulting tortuosity of transport pathways. We use magnetic fields to control the orientational order of Li-doped lamellar polyethylene oxide (PEO) microdomains in a liquid crystalline diblock copolymer over large length scales (>3 mm). Microdomain alignment results in an increase in the conductivity of the membrane, but the improvement relative to non-aligned samples is modest, and limited to roughly 50% in the best cases. This limited increase is in stark contrast to the order of magnitude improvement observed for magnetically aligned cylindrical microdomains of PEO. Further, the temperature dependence of the conductivity of lamellar microdomains is seemingly insensitive to the order-disorder phase transition, again in marked contrast to the behavior of cylinder-forming materials. The data are confronted with theoretical predictions of the microstructural model developed by Sax and Ottino. The disparity between the conductivity enhancements obtained by domain alignment of cylindrical and lamellar systems is rationalized in terms of the comparative ease of percolation due to the intersection of randomly oriented lamellar domains (2D sheets) versus the quasi-1D cylindrical domains. These results have important implications for the development of methods to maximize PEM conductivity in electrochemical devices, including batteries.
机译:嵌段共聚物衍生的聚合物电解质膜(PEMs)的传输特性对微结构紊乱敏感,这种紊乱源于通过微相分离在不受控制的自组装过程中产生的随机取向的微区。由于存在阻碍电导率的晶界以及由此导致的运输路径的曲折,这种微结构失调会对性能产生负面影响。我们使用磁场来控制大长度范围(> 3毫米)的液晶二嵌段共聚物中掺锂的层状聚环氧乙烷(PEO)微区的取向顺序。微区对准导致膜的电导率增加,但是相对于未对准样品而言,这种改善是适度的,并且在最佳情况下限于大约50%。这种有限的增加与对磁性排列的PEO圆柱形微区观察到的数量级改善形成鲜明对比。此外,层状微区的电导率的温度依赖性似乎对有序-无序相变不敏感,这再次与圆柱形成材料的行为形成鲜明对比。数据面临着由萨克斯和奥蒂诺开发的微观结构模型的理论预测。由于随机取向的层状畴(2D片)与准1D柱状畴的相交,通过比较容易的渗滤,合理化了通过圆柱状和层状体系的畴排列获得的电导率提高之间的差异。这些结果对开发使包括电池在内的电化学装置中的PEM电导率最大化的方法具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号