首页> 美国卫生研究院文献>PLoS Pathogens >Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles
【2h】

Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles

机译:宿主-寄生虫共代谢活化的抗胰锥虫氨基甲基-苯并草硼酸酯

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.
机译:基于苯并氧杂硼酸的化学的最新发展产生了具有巨大潜力的化合物,这些化合物具有针对多种传染病的潜力,其中包括人类非洲锥虫病(HAT),一种被破坏性极强的热带病。但是,由于缺乏对致病性动质体中作用机制(MoA)的了解,进一步限制了药物的开发。我们采用了多学科的方法,将高通量的前瞻性遗传筛选与针对功能组的化学生物学,结构生物学和生化分析相结合,以解决布鲁氏锥虫中苯并x硼烷的复杂MoAs。我们描述了由主体氨基脲敏感的胺氧化酶和锥虫醛脱氢酶TbALDH3组成的氧化酶途径。通过该途径的两个顺序反应是激活一系列4-氨基甲基苯氧基-苯并恶唑为有效的锥虫病的关键基础机制。首先将甲胺母体化合物作为前药转化为中间醛代谢物,然后再转化为有效形式的羧酸酯代谢物。此外,比较的生物化学和晶体学分析阐明了TbALDH3对作为异种底物的苯甲醛苯并x硼烷代谢物的催化特异性。总体而言,这项工作提出了一种新的药物活化机制,该机制既依赖于含伯胺的分子的宿主代谢,也依赖于寄生虫的代谢,这为我们对苯并氧杂硼酸MoA的理解提供了新的视角,并可以进一步用于改善抗微生物化合物的治疗指标。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号