首页> 美国卫生研究院文献>PLoS Pathogens >Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream
【2h】

Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream

机译:锥虫运动代表对脊椎血流拥挤环境的适应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy.
机译:血液是一个非凡的栖息地:它具有很高的粘性,包含密集的细胞包装,并以三个数量级以上的速度永久流动。尽管病原体不断受到宿主抗体的攻击,但很少有病原体能经受住脊椎动物血液中恶劣的生理条件并繁衍。非洲锥虫严格来说是细胞外血液中的寄生虫,它们通过抗原变异和持续运动来逃避免疫反应。鞭毛实际上如何在血液中游动仍有待阐明。在这里,我们表明锥虫运动的模式和动力学是在拥挤的环境中生活的一个特征。使用高速荧光显微镜和有序的微柱阵列,我们表明蠕虫的蠕动模式适应血液中细胞的密度。锥虫通过单个鞭毛的平面搏动向前拉。跨过不对称形状的细胞体的流体动力转化为其旋转运动。重要的是,需要存在具有血细胞形状,大小和间距的颗粒,并且这些颗粒足以使锥虫达到最大前进速度。但是,如果障碍物的密度进一步增加以类似于胶原网络或组织空间,则寄生虫会扭转鞭毛节拍并因此向后游动,从而避免被困住。在没有障碍物的情况下,这种鞭毛节拍逆转随机发生,导致波形不规则和明显的细胞翻滚。因此,锥虫的游泳行为是微适应低雷诺数生命的令人惊讶的例子。为了进行精确的物理解释,我们将高分辨率的微观数据与模拟技术的结果进行了比较,该技术将多粒子碰撞动力学方法与三角表面模型相结合。该模拟产生旋转的细胞体和螺旋状的游泳路径,从而为具有复杂游泳策略的微生物提供了一种有效的模拟方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号