首页> 美国卫生研究院文献>PLoS Genetics >Unifying Genetic Canalization Genetic Constraint and Genotype-by-Environment Interaction: QTL by Genomic Background by Environment Interaction of Flowering Time in Boechera stricta
【2h】

Unifying Genetic Canalization Genetic Constraint and Genotype-by-Environment Interaction: QTL by Genomic Background by Environment Interaction of Flowering Time in Boechera stricta

机译:统一遗传渠道化遗传约束和基因型与环境的相互作用:基于基因组背景的QTL和开花时间的环境相互作用在严格的Boechera中进行

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural populations exhibit substantial variation in quantitative traits. A quantitative trait is typically defined by its mean and variance, and to date most genetic mapping studies focus on loci altering trait means but not (co)variances. For single traits, the control of trait variance across genetic backgrounds is referred to as genetic canalization. With multiple traits, the genetic covariance among different traits in the same environment indicates the magnitude of potential genetic constraint, while genotype-by-environment interaction (GxE) concerns the same trait across different environments. While some have suggested that these three attributes of quantitative traits are different views of similar concepts, it is not yet clear, however, whether they have the same underlying genetic mechanism. Here, we detect quantitative trait loci (QTL) influencing the (co)variance of phenological traits in six distinct environments in Boechera stricta, a close relative of Arabidopsis. We identified nFT as the QTL altering the magnitude of phenological trait canalization, genetic constraint, and GxE. Both the magnitude and direction of nFT's canalization effects depend on the environment, and to our knowledge, this reversibility of canalization across environments has not been reported previously. nFT's effects on trait covariance structure (genetic constraint and GxE) likely result from the variable and reversible canalization effects across different traits and environments, which can be explained by the interaction among nFT, genomic backgrounds, and environmental stimuli. This view is supported by experiments demonstrating significant nFT by genomic background epistatic interactions affecting phenological traits and expression of the candidate gene, FT. In contrast to the well-known canalization gene Hsp90, the case of nFT may exemplify an alternative mechanism: Our results suggest that (at least in traits with major signal integrators such as flowering time) genetic canalization, genetic constraint, and GxE may have related genetic mechanisms resulting from interactions among major QTL, genomic backgrounds, and environments.
机译:自然种群在数量性状上表现出很大的差异。数量性状通常由其均值和方差定义,迄今为止,大多数遗传图谱研究都集中在基因座改变性状均值而不是(协)方差上。对于单个性状,跨遗传背景对性状变异的控制称为遗传渠道化。具有多个性状,同一环境中不同性状之间的遗传协方差表明潜在的遗传限制的大小,而不同环境之间的基因型-环境相互作用(GxE)涉及同一性状。尽管有人认为数量性状的这三个属性是相似概念的不同观点,但是尚不清楚它们是否具有相同的潜在遗传机制。在这里,我们检测到数量性状基因座(QTL),其影响拟南芥的近亲Boechera stricta六个不同环境中物候性状的(共)变异。我们确定nFT为QTL,可改变物候特性渠化,遗传约束和GxE的大小。 nFT渠化效果的大小和方向都取决于环境,据我们所知,这种跨环境渠化的可逆性以前尚未见过报道。 nFT对性状协方差结构(遗传约束和GxE)的影响可能是由于跨越不同性状和环境的可变和可逆的渠化作用所致,这可以用nFT,基因组背景和环境刺激之间的相互作用来解释。该观点得到了实验的支持,该实验通过影响物候特性和候选基因FT表达的基因组背景上位相互作用来证明明显的nFT。与著名的渠道化基因Hsp90相反,nFT的情况可能是另一种机制:我们的研究结果表明(至少在具有主要信号整合剂的性状如开花时间)遗传渠道化,遗传约束和GxE可能与主要QTL,基因组背景和环境之间相互作用的遗传机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号