首页> 美国卫生研究院文献>PLoS Genetics >Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntingtons Disease Transgenic Mice
【2h】

Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntingtons Disease Transgenic Mice

机译:亨廷顿氏病转基因小鼠的基础切除修复蛋白的化学计量与小脑纹状体中体细胞CAG不稳定性的增加有关

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion.
机译:亨廷顿舞蹈病(HD)是由亨廷顿(HTT)基因编码序列中不稳定的CAG重复序列的扩增引起的进行性神经退行性疾病。不稳定影响种系和体细胞。体细胞不稳定性随年龄增长而增加,并且是组织特异性的。尤其是,纹状体中的CAG重复序列(在HD中优先退化的大脑区域)高度不稳定,而在疾病多发的小脑中则相当稳定。体细胞CAG不稳定性的年龄依赖性和组织特异性的潜在机制仍然不清楚。最近的研究表明,DNA氧化和OGG1(一种参与8-氧代鸟嘌呤损伤修复的糖基化酶)有助于这一过程。我们显示在高清小鼠中,氧化DNA损伤以长度依赖性,但与年龄和组织无关的方式在CAG重复处异常积累,表明仅氧化DNA损伤不足以触发体细胞不稳定。比较了HD小鼠纹状体和小脑的蛋白质水平和主要碱基切除修复(BER)酶的活性。令人惊讶的是,纹状体中的5'-瓣内切核酸酶活性比HD小鼠的小脑低得多。因此,负责长5'-瓣内切核酸酶活性的主要酶Flap Endonuclease-1(FEN1)和参与长期修补BER(LP-BER)的BER辅因子HMGB1也明显低于纹状体与小脑相比。最后,染色质免疫沉淀实验表明POLβ在HD小鼠纹状体中的CAG扩展处特异性富集,而在HD小鼠的小脑中不丰富。这些体内数据拟合了一个模型,其中在LP–BER期间POLβ链置换活性促进了代表预膨胀中间结构的CAG重复序列处稳定5'瓣结构的形成,而当FEN1活性低时,该结构不能有效去除。我们提出,BER酶的化学计量是构成体细胞CAG扩展的组织选择性的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号