首页> 美国卫生研究院文献>Plant Physiology >Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis
【2h】

Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis

机译:利用纤维素合成酶(CESA)类特异性探查纤维素微纤维的生物合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis (Arabidopsis thaliana) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis.
机译:纤维素微纤维是植物中纤维素的基本单位。这些微原纤维的结构至少部分地由纤维素合酶复合物的结构确定。在高等植物中,该复合物由18至24个催化亚基组成,称为纤维素合成酶A(CESA)蛋白。纤维素合成和二次细胞壁纤维素生物合成需要三种不同类型的CESA蛋白,这些类型分别由CESA4,CESA7和CESA8表示。为了探查CESA蛋白和微纤维结构之间的关系,我们创建了突变的cesa蛋白,该蛋白缺乏催化活性,但保留了足够的结构完整性以允许组装纤维素合酶复合物。使用一系列拟南芥(Arabidopsis thaliana)突变体和遗传背景,我们发现这些突变cesa蛋白补充cesa null突变体的纤维素缺陷型的能力一致。催化失活的cesa4观察到最佳互补,而cesa8的等效突变表现出明显更低的互补水平。使用固态核磁共振和傅立叶变换红外显微镜等多种生物物理技术研究这些突变植物,我们发现了纤维素微纤维结构发生变化的证据,但这些变化很大程度上与纤维素含量相关,并反映了相对含量的差异。初级和次级细胞壁的比例。我们的结果表明,各个CESA类在确定纤维素微原纤维结构中具有相似的作用,并且不同CESA类的突变成员的不同作用可能是其不同催化活性及其对纤维素合成总速率的影响的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号