首页> 美国卫生研究院文献>Plant Physiology >Glycolate Induces Redox Tuning Of Photosystem II in Vivo: Study of a Photorespiration Mutant
【2h】

Glycolate Induces Redox Tuning Of Photosystem II in Vivo: Study of a Photorespiration Mutant

机译:乙醇酸诱导体内光系统II的氧化还原调节:光呼吸突变体的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bicarbonate removal from the nonheme iron at the acceptor side of photosystem II (PSII) was shown recently to shift the midpoint potential of the primary quinone acceptor QA to a more positive potential and lowers the yield of singlet oxygen (1O2) production. The presence of QA results in weaker binding of bicarbonate, suggesting a redox-based regulatory and protective mechanism where loss of bicarbonate or exchange of bicarbonate by other small carboxylic acids may protect PSII against 1O2 in vivo under photorespiratory conditions. Here, we compared the properties of QA in the Arabidopsis (Arabidopsis thaliana) photorespiration mutant deficient in peroxisomal HYDROXYPYRUVATE REDUCTASE1 (hpr1-1), which accumulates glycolate in leaves, with the wild type. Photosynthetic electron transport was affected in the mutant, and chlorophyll fluorescence showed slower electron transport between QA and QB in the mutant. Glycolate induced an increase in the temperature maximum of thermoluminescence emission, indicating a shift of the midpoint potential of QA to a more positive value. The yield of 1O2 production was lowered in thylakoid membranes isolated from hpr1-1 compared with the wild type, consistent with a higher potential of QA/QA. In addition, electron donation to photosystem I was affected in hpr1-1 at higher light intensities, consistent with diminished electron transfer out of PSII. This study indicates that replacement of bicarbonate at the nonheme iron by a small carboxylate anion occurs in plants in vivo. These findings suggested that replacement of the bicarbonate on the nonheme iron by glycolate may represent a regulatory mechanism that protects PSII against photooxidative stress under low-CO2 conditions.
机译:最近显示,从光系统II(PSII)受体侧的非血红素铁中除去碳酸氢盐会使伯醌受体QA的中点电势移至更高的正电势,并降低了单线态氧的产量( 1 O2)生产。 QA -的存在导致碳酸氢盐的结合较弱,表明基于氧化还原的调节和保护机制,其中碳酸氢盐的损失或其他小羧酸交换的碳酸氢盐可以保护PSII免受 1 <在光呼吸条件下体内氧气。在这里,我们比较了在过氧化物酶体羟基丙酮酸还原酶1(hpr1-1)中缺乏的拟南芥(Arabidopsis thaliana)光呼吸突变体中QA的特性,该过氧化物酶体在叶片中积累了乙醇酸,与野生型不符。光合电子传递在突变体中受到影响,并且叶绿素荧光显示突变体中QA和QB之间的电子传递较慢。乙醇酸引起热致发光发射的最大温度增加,表明QA的中点电势向更正的值偏移。与野生型相比,从hpr1-1分离的类囊体膜中 1 O2的产量降低,这与QA / QA -的潜力较高相符。此外,在较高的光强度下,hpr1-1中向光系统I的电子捐赠受到影响,这与电子从PSII向外转移的减少相一致。这项研究表明,体内的植物中会发生小分子羧酸根阴离子取代非血红素铁上的碳酸氢根。这些发现表明用甘醇酸酯代替非血红素铁上的碳酸氢盐可能代表了一种调节机制,可保护PSII在低CO2条件下免受光氧化应激。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号