首页> 美国卫生研究院文献>Plant Physiology >Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo
【2h】

Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo

机译:叶肉电导的温度响应。 Rubisco酶动力学测定和体内光合作用限制的意义。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

CO2 transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (gm), is finite. Therefore, it will limit photosynthesis when CO2 is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of gm. The process dominating gm is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO2 in water have all been suggested. The response of gm to temperature (10°C–40°C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q10) of approximately 2.2 for gm, suggesting control by a protein-facilitated process because the Q10 for diffusion of CO2 in water is about 1.25. Further, gm values are maximal at 35°C to 37.5°C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of gm to calculate CO2 at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10°C to 40°C. Using these parameters, we determined the limitation imposed on photosynthesis by gm. Despite an exponential rise with temperature, gm does not keep pace with increased capacity for CO2 uptake at the site of Rubisco. The fraction of the total limitations to CO2 uptake within the leaf attributable to gm rose from 0.10 at 10°C to 0.22 at 40°C. This shows that transfer of CO2 from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature.
机译:从叶的细胞间空域到叶绿体的CO2传输电导率(定义为叶肉电导率(gm))是有限的。因此,当CO2不饱和时,它将限制光合作用,如当前大气中的C3叶片一样。关于确定gm大小的过程知之甚少。尽管已经提出了碳酸酐酶,水通道蛋白和二氧化碳在水中的扩散性,但控制gm的过程尚不确定。通过测量叶片二氧化碳和水蒸气交换以及调制的叶绿素荧光,确定了烟草对成熟烟草叶(Nicotiana tabacum L. cv W38)的温度响应(10°C–40°C)。这些测量结果显示,温度系数(Q10)为gm约2.2,这表明通过蛋白质促成过程进行控制,因为CO2在水中扩散的Q10约为1.25。此外,gm值在35°C至37.5°C时最大,这再次表明是蛋白质促进的过程,但失活能量低于Rubisco。使用gm的温度响应计算Rubisco处的CO2,可以在10°C至40°C的体内计算Rubisco的动力学参数。利用这些参数,我们确定了g m 对光合作用的限制。尽管温度随温度呈指数上升,但 g m 并不能跟上Rubisco站点吸收CO 2 的能力。叶中 g m 引起的叶片中CO 2 吸收总量限制的比例从10时的0.10上升°C在40°C到0.22。这表明CO 2 从细胞间空域转移到Rubisco是光合作用的非常重要的限制,特别是在高温下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号