首页> 美国卫生研究院文献>Plant Physiology >Strategies for the Allocation of Resources under Sulfur Limitation in the Green Alga Dunaliella salina
【2h】

Strategies for the Allocation of Resources under Sulfur Limitation in the Green Alga Dunaliella salina

机译:绿藻杜氏盐藻在硫限制下的资源分配策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effect of sulfur limitation on the partitioning of carbon, nitrogen, and sulfur was investigated in Dunaliella salina. D. salina was able to adapt to 6 μm sulfate; under these conditions, the cells showed reduced growth and photosynthetic rates. Whereas intracellular sulfate was depleted, phosphate, nitrate, and ammonium increased. Amino acids showed a general increase, and alanine became the most abundant amino acid. The activities of four key enzymes of carbon, sulfur, and nitrogen metabolism were differentially regulated: Adenosine 5′ triphosphate sulfurylase activity increased 4-fold, nitrate reductase and phosphoenolpyruvate (PEP) carboxylase activities decreased 4- and 11-fold, respectively, whereas carbonic anhydrase activity remained unchanged. Sulfur limitation elicited specific increase or decrease of the abundance of several proteins, such us Rubisco, PEP carboxylase, and a light harvesting complex protein. The accumulation of potentially toxic ammonium indicates an insufficient availability of carbon skeletons. Sulfur deficiency thus induces an imbalance between carbon and nitrogen. The dramatic reduction in PEP carboxylase activity suggests that carbon was diverted away from anaplerosis and possibly channeled into C3 metabolism. These results indicate that it is the coordination of key steps and components of carbon, nitrogen, and sulfur metabolism that allows D. salina to adapt to prolonged sulfur limitation.
机译:在杜氏盐藻中研究了硫限制对碳,氮和硫分配的影响。 D. salina能够适应6μm的硫酸盐;在这些条件下,细胞显示出降低的生长和光合速率。而细胞内硫酸盐被耗尽,磷酸盐,硝酸盐和铵盐增加。氨基酸显示总体增加,而丙氨酸成为最丰富的氨基酸。碳,硫和氮代谢的四个关键酶的活性受到不同的调节:腺苷5'三磷酸硫醚化酶活性提高了4倍,硝酸还原酶和磷酸烯醇丙酮酸(PEP)羧化酶活性分别降低了4和11倍,而碳酸酐酶活性保持不变。硫的限制引起几种蛋白质(例如Rubisco,PEP羧化酶和光捕获复合蛋白质)的丰度发生特定的增加或减少。潜在毒性铵的积累表明碳骨架的可用性不足。因此,硫缺乏会引起碳和氮之间的不平衡。 PEP羧化酶活性的显着降低表明碳已从动脉瘤转移开来,并可能进入C3代谢。这些结果表明,正是碳,氮和硫代谢的关键步骤和组成的协调才使盐藻得以适应延长的硫限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号