首页> 美国卫生研究院文献>The Plant Cell >Streamlined Construction of the Cyanobacterial CO2-Fixing Organelle via Protein Domain Fusions for Use in Plant Synthetic Biology
【2h】

Streamlined Construction of the Cyanobacterial CO2-Fixing Organelle via Protein Domain Fusions for Use in Plant Synthetic Biology

机译:通过蛋白质结构域融合用于植物合成生物学的蓝细菌CO2固定细胞器的简化构建。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial microcompartments () are self-assembling organelles that sequester segments of biochemical pathways within a protein shell. Given their functional diversity, constitute a rich source of metabolic modules for applications in synthetic biology. The carboxysome, the cyanobacterial for CO2 fixation, has attracted significant attention as a target for installation into chloroplasts and serves as the foundation for introducing other types of into plants. Carboxysome assembly involves a series of protein-protein interactions among at least six gene products to form a metabolic core, around which the shell assembles. This complexity creates significant challenges for the transfer, regulation, and assembly of carboxysomes, or any of the myriad of functionally distinct , into heterologous systems. To overcome this bottleneck, we constructed a chimeric protein in the cyanobacterium Synechococcus elongatus that structurally and functionally replaces four gene products required for carboxysome formation. The protein was designed based on protein domain interactions in the carboxysome core. The resulting streamlined carboxysomes support photosynthesis. This strategy obviates the need to regulate multiple genes and decreases the genetic load required for carboxysome assembly in heterologous systems. More broadly, the reengineered carboxysomes represent a proof of concept for a domain fusion approach to building multifunctional enzymatic cores that should be generally applicable to the engineering of for new functions and cellular contexts.
机译:细菌微区隔()是自组装细胞器,可将蛋白质壳内的生化途径的各个部分隔离。鉴于它们的功能多样性,构成了在合成生物学中应用的代谢模块的丰富来源。作为固定二氧化碳的蓝细菌-羧基体,作为安装到叶绿体中的目标已引起了广泛的关注,并为将其他类型的植物引入植物奠定了基础。羧基组装涉及至少六个基因产物之间的一系列蛋白质-蛋白质相互作用,以形成代谢核心,壳围绕该核心进行组装。这种复杂性对将羧基体或多种功能独特的任何一种转移,调节和组装成异源系统提出了重大挑战。为了克服这个瓶颈,我们在蓝藻长突藻中构建了一种嵌合蛋白,该蛋白在结构上和功能上替代了形成羧基体所需的四个基因产物。该蛋白质是基于羧基核核心中的蛋白质结构域相互作用而设计的。所得的流线型羧基体支持光合作用。该策略消除了调节多个基因的需要,并减少了异源系统中羧基体组装所需的遗传负荷。更广泛地说,重新设计的羧基体代表了构建多功能酶核心的结构域融合方法的概念验证,该方法通常应适用于新功能和细胞环境的工程化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号