首页> 美国卫生研究院文献>Nanomaterials >An Ab Initio Study of Pressure-Induced Reversal of Elastically Stiff and Soft Directions in YN and ScN and Its Effect in Nanocomposites Containing These Nitrides
【2h】

An Ab Initio Study of Pressure-Induced Reversal of Elastically Stiff and Soft Directions in YN and ScN and Its Effect in Nanocomposites Containing These Nitrides

机译:从头开始研究YN和ScN的弹性刚度和软方向的压力诱导反转及其对包含这些氮化物的纳米复合材料的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using quantum-mechanical calculations of second- and third-order elastic constants for YN and ScN with the rock-salt (B1) structure, we predict that these materials change the fundamental type of their elastic anisotropy by rather moderate hydrostatic pressures of a few GPa. In particular, YN with its zero-pressure elastic anisotropy characterized by the Zener anisotropy ratio AZ=2C44/(C11C12) = 1.046 becomes elastically isotropic at the hydrostatic pressure of 1.2 GPa. The lowest values of the Young’s modulus (so-called soft directions) change from 〈100〉 (in the zero-pressure state) to the 〈111〉 directions (for pressures above 1.2 GPa). It means that the crystallographic orientations of stiffest (also called hard) elastic response and those of the softest one are reversed when comparing the zero-pressure state with that for pressures above the critical level. Qualitatively, the same type of reversal is predicted for ScN with the zero-pressure value of the Zener anisotropy factor AZ = 1.117 and the critical pressure of about 6.5 GPa. Our predictions are based on both second-order and third-order elastic constants determined for the zero-pressure state but the anisotropy change is then verified by explicit calculations of the second-order elastic constants for compressed states. Both materials are semiconductors in the whole range of studied pressures. Our phonon calculations further reveal that the change in the type of the elastic anisotropy has only a minor impact on the vibrational properties. Our simulations of biaxially strained states of YN demonstrate that a similar change in the elastic anisotropy can be achieved also under stress conditions appearing, for example, in coherently co-existing nanocomposites such as superlattices. Finally, after selecting ScN and PdN (both in B1 rock-salt structure) as a pair of suitable candidate materials for such a superlattice (due to the similarity of their lattice parameters), our calculations of such a coherent nanocomposite results again in a reversed elastic anisotropy (compared with the zero-pressure state of ScN).
机译:使用具有岩石盐(B1)结构的YN和ScN的二阶和三阶弹性常数的量子力学计算,我们预测这些材料会通过相当大的GPa适度的静水压力来改变其弹性各向异性的基本类型。特别是YN,其零压力弹性各向异性的特征在于齐纳各向异性比 A Z = 2 C 44 / C 11 C 12 = 1.046在1.2 GPa的静水压力下变为弹性各向同性。杨氏模量的最低值(所谓的软方向)从〈100〉(在零压力状态)变为〈111〉方向(对于1.2 GPa以上的压力)。这意味着在比较零压力状态和高于临界水平的压力时,最坚硬(也称为硬)弹性响应和最柔软的弹性响应的晶体学取向会颠倒。定性地,对于ScN,将使用齐纳各向异性系数的零压力值 A Z = 1.117压力约为6.5 GPa。我们的预测是基于为零压力状态确定的二阶和三阶弹性常数,但是各向异性的变化随后通过显式计算压缩态的二阶弹性常数来验证。两种材料在整个研究压力范围内都是半导体。我们的声子计算进一步表明,弹性各向异性类型的变化对振动特性的影响很小。我们对YN的双轴应变状态的模拟表明,在应力条件下,例如在相干共存的纳米复合材料(如超晶格)中,也可以实现弹性各向异性的类似变化。最后,在选择ScN和PdN(均为B1岩盐结构)作为此类超晶格的一对合适候选材料后(由于它们的晶格参数相似),我们对这种相干纳米复合材料的计算再次得出了相反的结论。弹性各向异性(与ScN的零压力状态相比)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号