首页> 美国卫生研究院文献>Molecules >Inorganic Salts and Antimicrobial Photodynamic Therapy: Mechanistic Conundrums?
【2h】

Inorganic Salts and Antimicrobial Photodynamic Therapy: Mechanistic Conundrums?

机译:无机盐和抗菌素光动力疗法:机械难题吗?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have recently discovered that the photodynamic action of many different photosensitizers (PSs) can be dramatically potentiated by addition of a solution containing a range of different inorganic salts. Most of these studies have centered around antimicrobial photodynamic inactivation that kills Gram-negative and Gram-positive bacteria in suspension. Addition of non-toxic water-soluble salts during illumination can kill up to six additional logs of bacterial cells (one million-fold improvement). The PSs investigated range from those that undergo mainly Type I photochemical mechanisms (electron transfer to produce superoxide, hydrogen peroxide, and hydroxyl radicals), such as phenothiazinium dyes, fullerenes, and titanium dioxide, to those that are mainly Type II (energy transfer to produce singlet oxygen), such as porphyrins, and Rose Bengal. At one extreme of the salts is sodium azide, that quenches singlet oxygen but can produce azide radicals (presumed to be highly reactive) via electron transfer from photoexcited phenothiazinium dyes. Potassium iodide is oxidized to molecular iodine by both Type I and Type II PSs, but may also form reactive iodine species. Potassium bromide is oxidized to hypobromite, but only by titanium dioxide photocatalysis (Type I). Potassium thiocyanate appears to require a mixture of Type I and Type II photochemistry to first produce sulfite, that can then form the sulfur trioxide radical anion. Potassium selenocyanate can react with either Type I or Type II (or indeed with other oxidizing agents) to produce the semi-stable selenocyanogen (SCN)2. Finally, sodium nitrite may react with either Type I or Type II PSs to produce peroxynitrate (again, semi-stable) that can kill bacteria and nitrate tyrosine. Many of these salts (except azide) are non-toxic, and may be clinically applicable.
机译:我们最近发现,通过添加包含一系列不同无机盐的溶液,可以显着增强许多不同光敏剂(PSs)的光动力作用。这些研究大多集中在杀灭悬浮液中杀死革兰氏阴性和革兰氏阳性细菌的抗微生物光动力学失活上。在照明过程中添加无毒的水溶性盐可杀死多达六对原木的细菌细胞(提高一百万倍)。所研究的PS包括主要经历I型光化学机制(电子转移以产生超氧化物,过氧化氢和羟​​基自由基)的那些,例如吩噻嗪鎓染料,富勒烯和二氧化钛,到主要属于II型(能量转移至产生单线态氧),例如卟啉和玫瑰红。盐的一个极端是叠氮化钠,它可以猝灭单线态氧,但可以通过光激发的吩噻嗪鎓染料通过电子转移产生叠氮化物自由基(假定具有高反应性)。 I型和II型PS均将碘化钾氧化为分子碘,但也可能形成反应性碘。溴化钾被氧化成次溴酸盐,但只能通过二氧化钛光催化(I型)。硫氰酸钾似乎需要I型和II型光化学的混合物才能首先生成亚硫酸盐,然后可以形成三氧化硫自由基阴离子。硒氰酸钾可以与I型或II型(或实际上与其他氧化剂)反应生成半稳定的硒氰(SCN)2。最后,亚硝酸钠可能与I型或II型PS发生反应,生成过氧硝酸盐(再次是半稳定的),可以杀死细菌和硝酸酪氨酸。这些盐(叠氮化物除外)中的许多无毒,并且在临床上可能适用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号