首页> 美国卫生研究院文献>Molecules >Solvation Dynamics of CO2(g) by Monoethanolamine at the Gas–Liquid Interface: A Molecular Mechanics Approach
【2h】

Solvation Dynamics of CO2(g) by Monoethanolamine at the Gas–Liquid Interface: A Molecular Mechanics Approach

机译:单乙醇胺在气-液界面处的CO2(g)溶解动力学:分子力学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A classical force field approach was used to characterize the solvation dynamics of high-density CO2(g) by monoethanolamine (MEA) at the air–liquid interface. Intra- and intermolecular CO2 and MEA potentials were parameterized according to the energetics calculated at the MP2 and BLYP-D2 levels of theory. The thermodynamic properties of CO2 and MEA, such as heat capacity and melting point, were consistently predicted using this classical potential. An approximate interfacial simulation for CO2(g)/MEA(l) was performed to monitor the depletion of the CO2(g) phase, which was influenced by amino and hydroxyl groups of MEA. There are more intramolecular hydrogen bond interactions notably identified in the interfacial simulation than the case of bulk MEA(l) simulation. The hydroxyl group of MEA was found to more actively approach CO2 and overpower the amino group to interact with CO2 at the air–liquid interface. With artificially reducing the dipole moment of the hydroxyl group, CO2–amino group interaction was enhanced and suppressed CO2(g) depletion. The hydroxyl group of MEA was concluded to play dual but contradictory roles for CO2 capture.
机译:一种经典的力场方法用于表征气-液界面处单乙醇胺(MEA)对高密度CO2(g)的溶剂化动力学。根据在MP2和BLYP-D2理论水平上计算出的能量,对分子内和分子间的CO2和MEA电位进行参数化。使用这种经典势能一致地预测了CO2和MEA的热力学性质,例如热容和熔点。对CO2(g)/ MEA(l)进行了近似界面模拟,以监测受MEA的氨基和羟基影响的CO2(g)相的耗竭。与本体MEA(1)模拟的情况相比,在界面模拟中明显发现了更多的分子内氢键相互作用。发现MEA的羟基更积极地接近CO2,并且使氨基更难以在气液界面与CO2相互作用。通过人为减少羟基的偶极矩,可增强CO2-氨基相互作用并抑制CO2(g)的消耗。得出结论,MEA的羟基在捕获二氧化碳方面起着双重但矛盾的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号