首页> 美国卫生研究院文献>Micromachines >Hydrodynamic Microparticle Separation Mechanism Using Three-Dimensional Flow Profiles in Dual-Depth and Asymmetric Lattice-Shaped Microchannel Networks
【2h】

Hydrodynamic Microparticle Separation Mechanism Using Three-Dimensional Flow Profiles in Dual-Depth and Asymmetric Lattice-Shaped Microchannel Networks

机译:二维和非对称格子形微通道网络中利用三维流动剖面的流体动力学微粒分离机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We herein propose a new hydrodynamic mechanism of particle separation using dual-depth, lattice-patterned asymmetric microchannel networks. This mechanism utilizes three-dimensional (3D) laminar flow profiles formed at intersections of lattice channels. Large particles, primarily flowing near the bottom surface, frequently enter the shallower channels (separation channels), whereas smaller particles flowing near the microchannel ceiling primarily flow along the deeper channels (main channels). Consequently, size-based continuous particle separation was achieved in the lateral direction in the lattice area. We confirmed that the depth of the main channel was a critical factor dominating the particle separation efficiencies, and the combination of 15-μm-deep separation channels and 40-μm-deep main channels demonstrated the good separation ability for 3–10-μm particles. We prepared several types of microchannels and successfully tuned the particle separation size. Furthermore, the input position of the particle suspension was controlled by adjusting the input flow rates and/or using a Y-shaped inlet connector that resulted in a significant improvement in the separation precision. The presented concept is a good example of a new type of microfluidic particle separation mechanism using 3D flows and may potentially be applicable to the sorting of various types of micrometer-sized objects, including living cells and synthetic microparticles.
机译:我们在本文中提出了一种使用双深度,晶格模式的不对称微通道网络进行颗粒分离的新型流体动力学机制。该机制利用在晶格通道相交处形成的三维(3D)层流轮廓。主要在底表面附近流动的大颗粒经常进入较浅的通道(分离通道),而在微通道顶板附近流动的较小颗粒则主要沿较深的通道(主通道)流动。因此,在晶格区域的横向上实现了基于尺寸的连续颗粒分离。我们证实,主通道的深度是决定颗粒分离效率的关键因素,深15μm的分离通道和深40μm的主通道的结合显示了对3-10μm颗粒的良好分离能力。 。我们准备了几种类型的微通道,并成功地调整了颗粒分离尺寸。此外,通过调节输入流速和/或使用Y形入口连接器来控制颗粒悬浮液的输入位置,这导致分离精度的显着提高。提出的概念是使用3D流动的新型微流控颗粒分离机制的一个很好的例子,并且可能适用于各种类型的微米级物体的分类,包括活细胞和合成微粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号