首页> 美国卫生研究院文献>Micromachines >High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel
【2h】

High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel

机译:微通道中气相中纳升液滴的高压加速

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microfluidics has been used to perform various chemical operations for pL–nL volumes of samples, such as mixing, reaction and separation, by exploiting diffusion, viscous forces, and surface tension, which are dominant in spaces with dimensions on the micrometer scale. To further develop this field, we previously developed a novel microfluidic device, termed a microdroplet collider, which exploits spatially and temporally localized kinetic energy. This device accelerates a microdroplet in the gas phase along a microchannel until it collides with a target. We demonstrated 6000-fold faster mixing compared to mixing by diffusion; however, the droplet acceleration was not optimized, because the experiments were conducted for only one droplet size and at pressures in the 10–100 kPa range. In this study, we investigated the acceleration of a microdroplet using a high-pressure (MPa) control system, in order to achieve higher acceleration and kinetic energy. The motion of the nL droplet was observed using a high-speed complementary metal oxide semiconductor (CMOS) camera. A maximum droplet velocity of ~5 m/s was achieved at a pressure of 1–2 MPa. Despite the higher fluid resistance, longer droplets yielded higher acceleration and kinetic energy, because droplet splitting was a determining factor in the acceleration and using a longer droplet helped prevent it. The results provide design guidelines for achieving higher kinetic energies in the microdroplet collider for various microfluidic applications.
机译:通过利用扩散,粘性力和表面张力,微流体技术已被用于执行pL–nL体积的样品的各种化学操作,例如混合,反应和分离,这些操作在微米尺度的空间中占主导地位。为了进一步发展该领域,我们先前开发了一种新型的微流体装置,称为微滴对撞机,该装置利用了时空局部动能。该装置沿微通道加速气相中的微滴,直到其与目标碰撞。与扩散混合相比,我们证明了混合快6000倍;但是,液滴的加速度并未得到优化,因为该实验仅针对一种液滴大小且在10-100 kPa的压力范围内进行。在这项研究中,我们使用高压(MPa)控制系统研究了微滴的加速度,以实现更高的加速度和动能。使用高速互补金属氧化物半导体(CMOS)相机观察nL液滴的运动。在1-2 MPa的压力下,最大液滴速度约为5 m / s。尽管流体阻力较高,但较长的液滴会产生较高的加速度和动能,这是因为液滴分裂是加速度的决定因素,而使用较长的液滴有助于阻止加速度。结果为在各种微流体应用中的微滴对撞机中实现更高动能提供了设计指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号