首页> 美国卫生研究院文献>Synthetic and Systems Biotechnology >Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum
【2h】

Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum

机译:基于序列同源物的分子工程可改变酶促pH最适值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cell-free synthetic biology system organizes multiple enzymes (parts) from different sources to implement unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a challenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship data of enzyme family. By two statistical procedures, artificial neural networks (ANNs) and least absolute shrinkage and selection operator (Lasso), five amino acids in GH11 xylanase family were identified to be related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH optima toward acidic condition without compromising the catalytic activity and thermostability. Combination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5 units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure analysis revealed that all the mutations are distant from the active center, which may be difficult to be identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at a certain region of the enzyme, suggesting a potential “hot zone” for regulating the pH optima of xylanases. This study provides an efficient method of modulating enzymatic pH optima based on statistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for the construction of complicated cell-free synthetic biology systems.
机译:无细胞合成生物学系统可以组织来自不同来源的多种酶(部分)来实现非天然的催化功能。催化部分之间的高度适应性对于建立有效的人工生物合成系统至关重要。蛋白质工程是一项强大的技术,可以定制各种酶特性,包括催化效率,底物特异性,温度适应性,甚至实现新的催化功能。然而,改变酶的最佳pH值仍然是一项艰巨的任务。在这项研究中,我们提出了一种基于序列同源物的新型蛋白质工程策略,用于基于酶家族的序列-功能关系数据的统计分析来转移酶促pH最适值。通过两种统计程序,人工神经网络(ANN)和最小绝对收缩和选择算子(Lasso),确定GH11木聚糖酶家族中的五个氨基酸与最佳pH酶的进化有关。定点诱变产自Caldicellulosiruptor bescii的嗜热木聚糖酶表明,五分之四的突变可在不影响催化活性和热稳定性的情况下,朝酸性条件改变酶促pH最佳值。阳性突变体的组合产生了最佳的突变体M31,与野生型酶相比,M31降低了其最适pH值1.5个单位的pH值,并在pH <5.0的条件下显示出增强的催化活性。结构分析表明,所有的突变都远离活动中心,这可能很难通过常规的合理设计策略来识别。有趣的是,这四个突变位点聚集在酶的某个区域,表明存在潜在的“热区”,用于调节木聚糖酶的最适pH。这项研究提供了一种基于统计序列分析的调节酶促pH最适值的有效方法,可帮助设计和优化用于构建复杂的无细胞合成生物学系统的合适催化部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号