首页> 美国卫生研究院文献>Light Science Applications >Substructure imaging of heterogeneous nanomaterials with enhanced refractive index contrast by using a functionalized tip in photoinduced force microscopy
【2h】

Substructure imaging of heterogeneous nanomaterials with enhanced refractive index contrast by using a functionalized tip in photoinduced force microscopy

机译:通过使用光致力显微镜中的功能化尖端提高折射率对比度的异质纳米材料的亚结构成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The opto-mechanical force response from light-illuminated nanoscale materials has been exploited in many tip-based imaging applications to characterize various heterogeneous nanostructures. Such a force can have two origins: thermal expansion and induced dipoles. The thermal expansion reflects the absorption of the material, which enables one to chemically characterize a material at the absorption resonance. The induced dipole interaction reflects the local refractive indices of the material underneath the tip, which is useful to characterize a material in the spectral region where no absorption resonance occurs, as in the infrared (IR)-inactive region. Unfortunately, the dipole force is relatively small, and the contrast is rarely discernible for most organic materials and biomaterials, which only show a small difference in refractive indices for their components. In this letter, we demonstrate that refractive index contrast can be greatly enhanced with the assistance of a functionalized tip. With the enhanced contrast, we can visualize the substructure of heterogeneous biomaterials, such as a polyacrylonitrile-nanocrystalline cellulose (PAN-NCC) nanofiber. From substructural visualization, we address the issue of the tensile strength of PAN-NCC fibers fabricated by several different mixing methods. Our understanding from the present study will open up a new opportunity to provide enhanced sensitivity for substructure mapping of nanobiomaterials, as well as local field mapping of photonic devices, such as surface polaritons on semiconductors, metals and van der Waals materials.
机译:在许多基于尖端的成像应用中,已经利用了光照纳米材料的光机械力响应来表征各种异质纳米结构。这种力可能有两个来源:热膨胀和感应偶极子。热膨胀反映了材料的吸收,这使人们能够在吸收共振时对材料进行化学表征。感应的偶极相互作用反映了尖端下方材料的局部折射率,这对于表征不发生吸收共振的光谱区域中的材料(如红外(IR)非活动区域)很有用。不幸的是,偶极力相对较小,并且对于大多数有机材料和生物材料而言,其对比度几乎是看不到的,它们的成分仅表现出很小的折射率差异。在这封信中,我们证明了借助功能性笔尖可以大大提高折射率对比。通过增强的对比度,我们可以可视化异质生物材料的子结构,例如聚丙烯腈-纳米晶体纤维素(PAN-NCC)纳米纤维。通过子结构的可视化,我们解决了通过几种不同的混合方法制造的PAN-NCC纤维的拉伸强度问题。从本研究中我们的理解将为提高纳米生物材料的亚结构图以及光子器件的局部场图(如半导体,金属和范德华材料上的表面极化子)的灵敏度提供新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号