首页> 美国卫生研究院文献>PLoS Computational Biology >Spatial neuronal synchronization and the waveform of oscillations: Implications for EEG and MEG
【2h】

Spatial neuronal synchronization and the waveform of oscillations: Implications for EEG and MEG

机译:空间神经元同步和振荡波形:对EEG和MEG的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuronal oscillations are ubiquitous in the human brain and are implicated in virtually all brain functions. Although they can be described by a prominent peak in the power spectrum, their waveform is not necessarily sinusoidal and shows rather complex morphology. Both frequency and temporal descriptions of such non-sinusoidal neuronal oscillations can be utilized. However, in non-invasive EEG/MEG recordings the waveform of oscillations often takes a sinusoidal shape which in turn leads to a rather oversimplified view on oscillatory processes. In this study, we show in simulations how spatial synchronization can mask non-sinusoidal features of the underlying rhythmic neuronal processes. Consequently, the degree of non-sinusoidality can serve as a measure of spatial synchronization. To confirm this empirically, we show that a mixture of EEG components is indeed associated with more sinusoidal oscillations compared to the waveform of oscillations in each constituent component. Using simulations, we also show that the spatial mixing of the non-sinusoidal neuronal signals strongly affects the amplitude ratio of the spectral harmonics constituting the waveform. Finally, our simulations show how spatial mixing can affect the strength and even the direction of the amplitude coupling between constituent neuronal harmonics at different frequencies. Validating these simulations, we also demonstrate these effects in real EEG recordings. Our findings have far reaching implications for the neurophysiological interpretation of spectral profiles, cross-frequency interactions, as well as for the unequivocal determination of oscillatory phase.
机译:神经元振荡在人脑中无处不在,并且实际上牵涉到所有脑功能。尽管可以通过功率谱中的一个突出峰来描述它们,但是它们的波形不一定是正弦曲线,而是显示出非常复杂的形态。可以利用这种非正弦神经元振荡的频率和时间描述。但是,在非侵入性EEG / MEG记录中,振荡波形通常呈正弦曲线形状,这反过来导致对振荡过程的看法过于简化。在这项研究中,我们在仿真中展示了空间同步如何掩盖基础节律性神经元过程的非正弦特征。因此,非正弦度可以用作空间同步的量度。为了从经验上证实这一点,我们表明,与每个组成成分的振荡波形相比,EEG成分的混合确实与更多的正弦振荡相关。使用模拟,我们还表明,非正弦神经元信号的空间混合会严重影响构成波形的频谱谐波的振幅比。最后,我们的仿真显示了空间混合如何影响强度,甚至影响不同频率下组成神经元谐波之间的幅度耦合方向。验证这些模拟,我们还将在真实的EEG录音中演示这些效果。我们的发现对于频谱分布,跨频相互作用的神经生理学解释以及对振荡相位的明确确定具有深远的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号