首页> 美国卫生研究院文献>PLoS Computational Biology >Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study
【2h】

Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study

机译:神经元增益的可调节性取决于树突形态:计算光遗传学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron’s input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron’s gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells—confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass the dendrites may miss some important neuronal functions, such as gain modulation.
机译:调节神经元输入输出功能的增益的机制已成为许多研究的主题。然而,关于树突在神经元增益控制中的作用知之甚少。基于空间分布或光刺激模式的新光遗传实验范式为阐明单细胞功能的许多方面提供了前景,包括树突在增益控制中的作用。因此,我们开发了一个模型来研究树突状乔木中竞争性的兴奋性和抑制性输入如何改变神经元增益,并将视蛋白的动力学模型整合到我们的模型中以确保其可通过实验测试。为了研究神经元树突树的不同拓扑结构如何影响神经元的输入输出特性,我们生成了分支几何结构,这些几何结构复制了大多数常见神经元的形态特征,但使分支的数目和树突的总面积保持近似恒定。我们发现神经元的增益可调节性与其树突形态之间的关系,具有中等分支度的双极树突的神经元最容易控制其输入输出关系的增益。然后,对该理论进行了测试,并在两个真实的神经元示例上得到了证实:1)V层锥体细胞-确认其在神经回路中除了充当主要的兴奋性神经元外,还作为回路中增益的调节器,并且2)呈星状细胞。除了提供可检验的预测和双视蛋白的新颖应用外,我们的模型还表明,要完全增益调制,必须对所有树突状亚结构域进行神经支配,这揭示了树突状靶向在神经元增益控制及其功能中的重要性。 。最后,我们的研究还表明,使用直流电注入躯体并绕过树突的神经生理学研究可能会错过一些重要的神经元功能,例如增益调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号