首页> 美国卫生研究院文献>PLoS Computational Biology >ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy
【2h】

ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy

机译:ChromoTrace:用于超分辨率显微镜的3D染色体配置的计算重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The 3D structure of chromatin plays a key role in genome function, including gene expression, DNA replication, chromosome segregation, and DNA repair. Furthermore the location of genomic loci within the nucleus, especially relative to each other and nuclear structures such as the nuclear envelope and nuclear bodies strongly correlates with aspects of function such as gene expression. Therefore, determining the 3D position of the 6 billion DNA base pairs in each of the 23 chromosomes inside the nucleus of a human cell is a central challenge of biology. Recent advances of super-resolution microscopy in principle enable the mapping of specific molecular features with nanometer precision inside cells. Combined with highly specific, sensitive and multiplexed fluorescence labeling of DNA sequences this opens up the possibility of mapping the 3D path of the genome sequence in situ. Here we develop computational methodologies to reconstruct the sequence configuration of all human chromosomes in the nucleus from a super-resolution image of a set of fluorescent in situ probes hybridized to the genome in a cell. To test our approach, we develop a method for the simulation of DNA in an idealized human nucleus. Our reconstruction method, ChromoTrace, uses suffix trees to assign a known linear ordering of in situ probes on the genome to an unknown set of 3D in-situ probe positions in the nucleus from super-resolved images using the known genomic probe spacing as a set of physical distance constraints between probes. We find that ChromoTrace can assign the 3D positions of the majority of loci with high accuracy and reasonable sensitivity to specific genome sequences. By simulating appropriate spatial resolution, label multiplexing and noise scenarios we assess our algorithms performance. Our study shows that it is feasible to achieve genome-wide reconstruction of the 3D DNA path based on super-resolution microscopy images.
机译:染色质的3D结构在基因组功能中起关键作用,包括基因表达,DNA复制,染色体分离和DNA修复。此外,基因组位点在核内的位置,尤其是相对于彼此的位置,以及核结构(如核被膜和核体)的位置与功能(如基因表达)密切相关。因此,确定人类细胞核内23条染色体中每条染色体中60亿个DNA碱基对的3D位置是生物学的主要挑战。超分辨率显微镜的最新进展在原理上使得能够在细胞内部以纳米精度绘制特定分子特征的图。结合DNA序列的高度特异性,灵敏和多重荧光标记,这打开了原位定位基因组序列3D路径的可能性。在这里,我们开发了一种计算方法,可以从与细胞基因组杂交的一组荧光原位探针的超分辨率图像中重建核中所有人类染色体的序列配置。为了测试我们的方法,我们开发了一种在理想的人类细胞核中模拟DNA的方法。我们的重建方法ChromoTrace使用后缀树将基因组上原位探针的已知线性顺序分配给超分辨图像中核中未知的3D原位探针位置集合,使用已知的基因组探针间距作为一组探针之间的物理距离约束。我们发现ChromoTrace可以以高精度和对特定基因组序列的合理敏感性分配大多数基因座的3D位置。通过模拟适当的空间分辨率,标签复用和噪声情况,我们评估了算法的性能。我们的研究表明,基于超分辨率显微镜图像,实现3D DNA路径的全基因组重建是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号