首页> 美国卫生研究院文献>PLoS Computational Biology >Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex
【2h】

Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex

机译:以血液作为悬浮液的模拟预测整个大脑皮层循环中深度依赖的血细胞比容

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in modeling oxygen supply to cortical brain tissue have begun to elucidate the functional mechanisms of neurovascular coupling. While the principal mechanisms of blood flow regulation after neuronal firing are generally known, mechanistic hemodynamic simulations cannot yet pinpoint the exact spatial and temporal coordination between the network of arteries, arterioles, capillaries and veins for the entire brain. Because of the potential significance of blood flow and oxygen supply simulations for illuminating spatiotemporal regulation inside the cortical microanatomy, there is a need to create mathematical models of the entire cerebral circulation with realistic anatomical detail. Our hypothesis is that an anatomically accurate reconstruction of the cerebrocirculatory architecture will inform about possible regulatory mechanisms of the neurovascular interface. In this article, we introduce large-scale networks of the murine cerebral circulation spanning the Circle of Willis, main cerebral arteries connected to the pial network down to the microcirculation in the capillary bed. Several multiscale models were generated from state-of-the-art neuroimaging data. Using a vascular network construction algorithm, the entire circulation of the middle cerebral artery was synthesized. Blood flow simulations indicate a consistent trend of higher hematocrit in deeper cortical layers, while surface layers with shorter vascular path lengths seem to carry comparatively lower red blood cell (RBC) concentrations. Moreover, the variability of RBC flux decreases with cortical depth. These results support the notion that plasma skimming serves a self-regulating function for maintaining uniform oxygen perfusion to neurons irrespective of their location in the blood supply hierarchy. Our computations also demonstrate the practicality of simulating blood flow for large portions of the mouse brain with existing computer resources. The efficient simulation of blood flow throughout the entire middle cerebral artery (MCA) territory is a promising milestone towards the final aim of predicting blood flow patterns for the entire brain.
机译:对皮层脑组织供氧模型的最新进展已开始阐明神经血管耦合的功能机制。虽然神经元放电后血流调节的主要机制是众所周知的,但是机械性血流动力学模拟仍无法查明整个大脑的动脉,小动脉,毛细血管和静脉网络之间的确切时空协调性。由于血液流动和氧气供应模拟对于阐明皮层微观解剖结构内部的时空调节具有潜在的重要性,因此需要创建具有真实解剖结构细节的整个大脑循环的数学模型。我们的假设是脑循环结构的解剖学精确重建将告知神经血管界面的可能调节机制。在本文中,我们介绍了跨越Willis环的鼠类脑循环的大规模网络,主要的脑动脉连接到了皮层网络,直至毛细血管床的微循环。从最新的神经影像数据生成了几个多尺度模型。使用血管网络构建算法,合成了大脑中动脉的整个循环。血流模拟表明,在较深的皮层中,血细胞比容较高的趋势是一致的,而具有较短血管路径长度的表面层似乎带有相对较低的红细胞(RBC)浓度。此外,RBC通量的变异性随皮层深度而减小。这些结果支持这样的观念,即撇脂具有自我调节功能,无论神经元在血液供应层次中的位置如何,都可以维持对神经元的均匀氧灌注。我们的计算还证明了利用现有计算机资源来模拟大部分鼠标大脑的血流的实用性。整个大脑中动脉(MCA)区域内血流的有效模拟是朝着预测整个大脑血流模式的最终目标迈出的有希望的里程碑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号