首页> 美国卫生研究院文献>PLoS Computational Biology >Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble
【2h】

Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

机译:神经元-神经胶质-脉管系统集成中的活动依赖代谢耦合的多时标建模。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.
机译:在正常情况下,葡萄糖是成人大脑中的主要能量底物。然而,越来越多的证据表明,星形胶质细胞(一种神经胶质细胞)中产生的乳酸也可以促进神经元活动。这种所谓的星形胶质细胞-神经元乳酸穿梭(ANLS)的定量方面仍在争论中。为了解决这个问题,我们开发了大脑代谢相互作用的详细生物物理模型。我们的模型集成了三种建模方法:血管动力学的Buxton-Wang模型,神经元膜兴奋性的霍奇金-赫克斯利公式和代谢途径的生物物理模型。这种方法为神经胶质-脉管系统(NGV)集成的大规模仿真提供了模板,并且首次整合了发生能量代谢和神经元兴奋性的各个时间尺度。该模型受到相对神经元和星形细胞氧和葡萄糖利用,静止时代谢物的浓度以及激活时NADH的时间动态的限制。这些约束产生了四个观察结果。首先,响应活性,出现了乳酸从星形胶质细胞向神经元的转移。第二,受活动依赖的NADH瞬态的约束,神经元的氧化代谢在激活后首先增加,随后延迟的星形胶质糖酵解增加。第三,该模型正确预测了大鼠体内观察到的细胞外乳酸和氧气的动态。第四,该模型正确预测了人体研究中组织乳酸,组织葡萄糖和氧气消耗以及BOLD信号的时间动态。这些发现不仅支持ANLS假设,而且还提供了对神经元和神经胶质细胞中代谢激活以及大脑成像过程中获得的宏观测量结果的定量数学描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号