首页> 美国卫生研究院文献>PLoS Computational Biology >Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats
【2h】

Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats

机译:拖网蝙蝠的延迟反应和生物声纳感知解释运动协调。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping.
机译:通常通过假设未指定的吸引,排斥和对准与观察到的运动数据中得出的参数有关的社会力量来解释动物协调运动的相互作用。在这里,我们提出并测试了一种基于空间感知偏差(即实际声场,反应延迟以及观察到的速度和加速度限制)的回声定位蝙蝠的生物学现实且可量化的生物声纳运动相互作用机制。我们发现,成对的蝙蝠在水面上飞行会交换领导者的角色,并通过复制附近个体的航向执行追逐或协调动作,这种行为早在500毫秒之前就完成了。我们提出的机制基于感觉运动约束和延迟对齐之间的相互作用,能够重现观察到的空间actor-reactor模式。值得注意的是,当我们改变模型参数(响应延迟,听力阈值和回声定位方向性)超过自然界中观察到的参数时,由模型创建的时空相互作用模式仅会重建观察到的相互作用,即追逐,并且与观察到的空间模式最匹配仅发现蝙蝠使用的那些响应延迟,听力阈值和回声定位方向性。这证明了我们的运动协调感官生态学方法的有效性,其中互动的蝙蝠通过主动回声定位而不是窃听来相互定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号