首页> 美国卫生研究院文献>PLoS Computational Biology >Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains
【2h】

Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains

机译:使用量化张量列直接求解化学主方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to “lift” this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging -discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our method automatically adapts the “basis” of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude storage savings over direct approaches.
机译:化学主方程(CME)是生物化学反应网络模型的随机分析和模拟的基石。然而,CME的直接解决方案仍然难以捉摸。尽管有几种方法通过投影或其他方法克服了CME的无穷维本质,但提出的方法的共同特征是它们易受维数诅咒的影响,即内存的指数增长和问题维数的计算需求。我们提出了一种新颖的方法,有可能“解除”维数的诅咒。该方法基于最近提出的量化张量火车(QTT)格式的数字线性代数用于张量的低参数数字表示。 QTT分解接受了基本张量算术的算法,这些算法的复杂度在维数(物种数)上线性缩放,在模式大小(最大拷贝数)中亚线性缩放,并且数值张量舍入过程既稳定又是准最优的。我们展示了CME如何以QTT格式表示,然后及时使用指数收敛-间断Galerkin离散化将CME演化问题简化为一组QTT结构的线性方程,使用基于算法的算法在每个时间步求解量子化学的密度矩阵重整化组(DMRG)方法的研究。我们的方法在每个时间步都自动适应解决方案的“基础”,以确保其足够大以捕获感兴趣的动态,但又不超过所需的动态,因为这会增加计算复杂性。通过将其应用于系统生物学的三个不同示例来证明我们的方法:独立的出生-死亡过程,酶的无用循环示例和随机转换模型。这些示例的数值结果表明,与直接方法相比,所提出的QTT方法可显着提高速度,并节省几个数量级的存储。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号