首页> 美国卫生研究院文献>PLoS Computational Biology >Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model
【2h】

Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model

机译:体内类似网络活动的谷氨酸结合NMDARs扩展时空整合在L5皮质金字塔形细胞模型中。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.
机译:在体内,由不断进行的网络活动引起的异步突触输入轰击皮质锥体细胞。然而,关于这种“背景”突触输入与非线性树突机制如何相互作用的了解甚少。我们已经修改了第5层(L5)锥体细胞的现有模型,以探索如何通过体内观察到的网络活动水平来改变顶端树突簇中的树突整合。在这里,我们显示异步背景兴奋性输入增加神经元增益,并在树突状簇上扩展刺激诱发的突触输入的时间和空间整合。添加快速和慢速抑制突触电导,具有与树突状靶向中间神经元相似的特性,提供了“平衡”的背景结构,部分抵消了这些影响,表明抑制作用可以调节簇中的时空整合。兴奋的背景输入降低了NMDA受体介导的树突棘的阈值,延长了其持续时间,并增加了在邻近分支中发生其他再生事件的可能性。在消除了所有非突触电压门控电导的被动模型中也观察到了这些影响。我们的结果表明,由正在进行的网络活动引起的与谷氨酸结合的NMDA受体可以提供强大的空间分布的非线性树突状电导。这可以使L5锥体细胞根据本地网络活动来更改其整合属性,从而有可能允许在扩展的时间尺度上整合群集的和空间分布的突触输入。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号