首页> 美国卫生研究院文献>PLoS Computational Biology >Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method
【2h】

Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method

机译:距离引导顺序链增长蒙特卡洛方法快速蛋白质环采样和结构预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Loops in proteins are flexible regions connecting regular secondary structures. They are often involved in protein functions through interacting with other molecules. The irregularity and flexibility of loops make their structures difficult to determine experimentally and challenging to model computationally. Conformation sampling and energy evaluation are the two key components in loop modeling. We have developed a new method for loop conformation sampling and prediction based on a chain growth sequential Monte Carlo sampling strategy, called Distance-guided Sequential chain-Growth Monte Carlo (DiSGro). With an energy function designed specifically for loops, our method can efficiently generate high quality loop conformations with low energy that are enriched with near-native loop structures. The average minimum global backbone RMSD for 1,000 conformations of 12-residue loops is Å, with a lowest energy RMSD of Å, and an average ensemble RMSD of Å. A novel geometric criterion is applied to speed up calculations. The computational cost of generating 1,000 conformations for each of the x loops in a benchmark dataset is only about cpu minutes for 12-residue loops, compared to ca cpu minutes using the FALCm method. Test results on benchmark datasets show that DiSGro performs comparably or better than previous successful methods, while requiring far less computing time. DiSGro is especially effective in modeling longer loops (– residues).
机译:蛋白质中的环是连接规则二级结构的柔性区域。它们通常通过与其他分子相互作用而参与蛋白质功能。循环的不规则性和灵活性使它们的结构难以通过实验确定,并且很难进行计算建模。形态采样和能量评估是回路建模的两个关键组成部分。我们已经开发了一种基于链增长顺序蒙特卡洛采样策略的环路构象采样和预测的新方法,称为距离指导顺序链增长蒙特卡洛(DiSGro)。通过专门为环路设计的能量函数,我们的方法可以有效地生成低能量的高质量环路构象,并丰富了本机环路结构。 1000个构象的12个残基环的平均最小全局主干RMSD为Å,最低能量RMSD为Å,平均总体RMSD为Å。应用了新颖的几何准则来加快计算速度。与使用FALCm方法的ca cpu分钟相比,对于12个残基的循环,为基准数据集中的每个x循环生成1,000个构象的计算成本仅为约cpu分钟。在基准数据集上的测试结果表明,DiSGro的性能与以前成功的方法相当或更好,而所需的计算时间却少得多。 DiSGro在建模更长的环(-残基)时特别有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号