首页> 美国卫生研究院文献>PLoS Computational Biology >Dendritic Nonlinearities Reduce Network Size Requirements and Mediate ON and OFF States of Persistent Activity in a PFC Microcircuit Model
【2h】

Dendritic Nonlinearities Reduce Network Size Requirements and Mediate ON and OFF States of Persistent Activity in a PFC Microcircuit Model

机译:树突状非线性降低了网络大小的要求并介导了PFC微电路模型中持续活动的ON和OFF状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Technological advances have unraveled the existence of small clusters of co-active neurons in the neocortex. The functional implications of these microcircuits are in large part unexplored. Using a heavily constrained biophysical model of a L5 PFC microcircuit, we recently showed that these structures act as tunable modules of persistent activity, the cellular correlate of working memory. Here, we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes. We show that (a) NMDA-mediated dendritic spikes gate the induction of persistent firing in the microcircuit. (b) The minimum network size required for persistent activity induction is inversely proportional to the synaptic drive of each excitatory neuron. (c) Relaxation of connectivity and synaptic delay constraints eliminates the gating effect of NMDA spikes, albeit at a cost of much larger networks. (d) Persistent activity termination by increased inhibition depends on the strength of the synaptic input and is negatively modulated by dADP. (e) Slow synaptic mechanisms and network activity contain predictive information regarding the ability of a given stimulus to turn ON and/or OFF persistent firing in the microcircuit model. Overall, this study zooms out from dendrites to cell assemblies and suggests a tight interaction between dendritic non-linearities and network properties (size/connectivity) that may facilitate the short-memory function of the PFC.
机译:技术进步已经揭示了新皮层中小簇的活性神经元的存在。这些微电路的功能含义在很大程度上尚待探索。最近,使用L5 PFC微电路的严格约束的生物物理模型,我们发现这些结构充当了持久性活动(工作记忆的细胞关联)的可调模块。在这里,我们调查了持续活动出现(ON)和终止(OFF)的基础机制,并寻找在生理状态下表达这些状态所需的最小网络大小。我们显示(a)NMDA介导的树突状尖峰门在微电路中持续燃烧的诱导。 (b)持续活动诱导所需的最小网络大小与每个兴奋性神经元的突触驱动力成反比。 (c)放宽连接性和突触延迟约束消除了NMDA尖峰的门控效应,尽管这要以更大的网络为代价。 (d)通过增加抑制作用来持久性终止活性取决于突触输入的强度,并被dADP负调节。 (e)缓慢的突触机制和网络活动包含有关给定刺激在微电路模型中打开和/或关闭持续放电能力的预测信息。总的来说,这项研究缩小了从树突到细胞组装的范围,并提出了树突非线性和网络特性(尺寸/连接性)之间的紧密相互作用,这可能有助于PFC的短记忆功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号