首页> 美国卫生研究院文献>PLoS Computational Biology >Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory
【2h】

Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory

机译:使用动力系统理论确定足以引起原发性躯体感觉传入神经兴奋性的分子病理学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate this, we built computational models that reproduce the switch from a normal spiking pattern characterized by a single spike at the onset of depolarization to a neuropathic one characterized by repetitive spiking throughout depolarization. Parameter changes that were sufficient to switch the spiking pattern also enabled membrane potential oscillations and bursting, suggesting that all three pathological changes are mechanistically linked. Dynamical analysis confirmed this prediction by showing that excitability changes co-develop when the nonlinear mechanism responsible for spike initiation switches from a quasi-separatrix-crossing to a subcritical Hopf bifurcation. This switch stems from biophysical changes that bias competition between oppositely directed fast- and slow-activating conductances operating at subthreshold potentials. Competition between activation and inactivation of a single conductance can be similarly biased with equivalent consequences for excitability. “Bias” can arise from a multitude of molecular changes occurring alone or in combination; in the latter case, changes can add or offset one another. Thus, our results identify pathological change in the nonlinear interaction between processes affecting spike initiation as the critical determinant of how simple injury-induced changes at the molecular level manifest complex excitability changes at the cellular level. We demonstrate that multiple distinct molecular changes are sufficient to produce neuropathic changes in excitability; however, given that nerve injury elicits numerous molecular changes that may be individually sufficient to alter spike initiation, our results argue that no single molecular change is necessary to produce neuropathic excitability. This deeper understanding of degenerate causal relationships has important implications for how we understand and treat neuropathic pain.
机译:由神经损伤(即神经性疼痛)引起的疼痛与沿疼痛途径的几个点的神经元过度兴奋性的发展有关。在原发性传入细胞中,已经鉴定出许多损伤引起的变化,但尚不清楚哪些分子变化是必要且足以解释细胞过度兴奋性的。为了对此进行研究,我们建立了计算模型,该模型重现了从以去极化开始时的单个尖峰为特征的正常尖峰模式转换为以整个去极化过程中的重复性尖峰为特征的神经性模式的转换。足以切换尖峰模式的参数变化还使膜电位振荡和破裂,表明所有这三种病理变化是机械联系的。动力学分析证实了这种预测,表明当负责尖峰引发的非线性机制从准分离线交叉转变为亚临界Hopf分叉时,兴奋性变化会共同发展。此切换源于生物物理变化,该变化使在亚阈值电势下运行的相反方向的快速激活和缓慢激活的电导之间的竞争产生偏差。单个电导的激活和失活之间的竞争可能会受到类似的偏见,从而对兴奋性产生同等的影响。 “偏见”可能源于单独或组合发生的多种分子变化;在后一种情况下,更改可以相互补充或抵消。因此,我们的研究结果确定了影响尖峰启动的过程之间的非线性相互作用的病理变化,这是分子水平上简单的损伤诱导变化在细胞水平上表现出复杂的兴奋性变化的关键决定因素。我们证明了多个不同的分子变化足以产生神经性兴奋性变化。然而,鉴于神经损伤会引起许多分子变化,这些变化可能足以改变尖峰开始,因此我们的研究结果表明,不需要任何单个分子变化即可产生神经性兴奋性。对退化的因果关系的更深入了解对我们如何理解和治疗神经性疼痛具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号