首页> 美国卫生研究院文献>PLoS Computational Biology >Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction
【2h】

Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction

机译:致病性大肠埃希菌中成虫电路开关的温度控制:通过自动模型抽象进行定量分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element—the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be particularly significant inside the host environment, thus potentially contributing further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.
机译:尿毒原性大肠杆菌(UPEC)是尿路感染(UTIs)的主要原因。 UPEC关键的分子毒力机制是1型菌毛,其表达受可逆染色体DNA元件-fim开关的方向控制。温度已被证明是膜切换行为的主要调节者,并且总体上是许多泌尿系统疾病的重要指标以及功能特征,包括UPEC宿主-病原体相互作用动力学。鉴于温度在UTI进展过程中的这种全景生理作用,以及对其直接体内研究的显着经验挑战,对UPEC致病性必不可少的相应生化和生物物理机制进行计算机模拟可以极大地帮助我们理解潜在的疾病过程。然而,由于所涉及的基因调节网络的复杂性以及它们通常具有特征性的离散和随机动力学,对生物系统,例如薄膜开关温度控制电路,进行严格的计算分析已经提出了一个臭名昭著的问题。为了解决这些问题,我们开发了一种方法,该方法可以基于反应动力学自动对生物系统描述进行多尺度抽象。作为一种计算工具,该方法使我们能够有效地分析在不同温度设置下大肠杆菌纤维化开关电路的模块化组织和行为,从而有助于人们对这种UPEC分子毒力调控模式进行新的认识。特别是,我们的研究结果表明,就其在关闭菌毛表达中的作用而言,FimB重组酶的主要功能可能是通过以下方式控制ON-OFF膜切换速率的受控下调(而不是增加):重组酶FimE介导的竞争动力学的温度依赖性抑制。我们的计算分析进一步表明,这种下调机制在宿主环境中可能特别重要,因此有可能进一步促进对UPEC引起的UTI的新型治疗方法的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号