首页> 美国卫生研究院文献>PLoS Computational Biology >Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks
【2h】

Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks

机译:非线性间隙连接使星形细胞网络中脉动钙波能远距离传播。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca2+ wave propagation in astrocytes. Our model yields two major predictions. First, we show that long-distance regenerative signaling requires nonlinear coupling in the gap junctions. Second, we show that even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca2+ waves across astrocytes and the precise conditions under which glial cells may participate in information processing in the brain.
机译:最近在脑科学中出现了一种新的范例,通过该范例,应将神经胶质细胞与神经元-神经胶质细胞相互作用之间的通讯与神经元及其网络一起考虑,以了解更高的大脑功能。特别是,星形胶质细胞是皮层中神经胶质细胞的主要类型,已显示与神经元和彼此通讯。人们认为它们通过传播Ca 2 + 波形成间隙连接耦合合胞体,支持细胞间的通信。一种确定的传播方式是基于肌醇三磷酸肌醇(IP3)通过间隙连接的细胞质到细胞质的运输,这些连接通过IP3依赖性Ca 2 + 2 + 脉冲>诱导的Ca 2 + 释放。但是,目前尚不清楚该细胞内途径是否能够支持长距离再生Ca 2 + 波的传播或是否局限于短距离信号传导。此外,细胞内信号传导动力学对细胞间繁殖的影响仍有待了解。在这项工作中,我们提出了星形胶质细胞中细胞间Ca 2 + 波传播的间隙连接途径的模型。我们的模型得出两个主要预测。首先,我们表明长距离再生信号传导需要间隙连接中的非线性耦合。其次,我们表明,即使内部具有非线性间隙连接,当内部Ca 2 + 动力学实现具有脉动动力学的调频编码振荡时,长距离再生信号还是受到青睐的,而幅度调制编码动力学则倾向于限制传播范围。结果,空间异质的分子特性和/或弱耦合显示出引起丰富的时空动力学,支持复杂的传播行为。这些结果为涉及Ca 2 + 波在星形胶质细胞中传播的机制以及神经胶质细胞可能参与大脑信息处理的精确条件提供了新的思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号