首页> 外文学位 >Effect of cell geometry and gap junction conductance on wave propagation in myocardium: A computational approach.
【24h】

Effect of cell geometry and gap junction conductance on wave propagation in myocardium: A computational approach.

机译:细胞几何形状和间隙连接电导对心肌中波传播的影响:一种计算方法。

获取原文
获取原文并翻译 | 示例

摘要

The conduction velocity and the path of propagation of electrical waves determine the effectiveness of contraction of the heart muscle. Areas of slow conduction and block may lead to the formation of cardiac arrhythmias, which may result in cardiac fibrillation and sudden cardiac death. Propagation of cardiac waves is determined by both passive and active properties of myocardium.;Cardiac disease, like heart failure and myocardial infarction, as well as aging result in changes in cell geometry and the remodeling of the ionic channels and intercellular gap junctions. The main objective of this thesis is to determine the effect of the cellular microstructure like cell geometry and intercellular gap junctions on propagation of the cardiac waves, using a sub-cellular computer model of myocardium.;We found that variations in cell size, with a constant cell length/width ratio, shows small effects on conduction velocities. The results were not dependent on gap junction distribution and conductance, or the details of the tissue architecture. Other parameters kept constant, length/width was a good predictor of the velocity of propagation and anisotropic ratio. These results indicate that cell shape is more important than cell size in determining conduction velocity of the propagating wave.;We also found that structural heterogeneities, due to spatial hetorogenetities in cell geometry or gap junction conductance lead to conduction block (a precursor of cardiac arrhythmias). Both, cell geometry and gap junctional conductance (among other factors) determine the tissue space constant. Conduction block occurred when a wave propagated into regions with a larger space constant (∼ 40--50% increase). As the ratio cell length/width increases the tissue space constant is less sensitive to changes in cell geometry and gap junction conductance. As a consequence, tissue architectures with more elongated cells (i.e. higher length/width ratio) are less sensitive to structural heterogeneities resulting from cell geometry and gap junction conductance. This findings may have important implications for tissue engineering, and the design of cardiac tissues.
机译:电波的传导速度和传播路径决定了心肌收缩的有效性。传导迟缓和阻塞的区域可能导致心律不齐的形成,这可能导致心脏颤动和心源性猝死。心肌的被动和主动特性决定了心脏波的传播。心脏疾病(如心力衰竭和心肌梗塞)以及衰老会导致细胞几何结构的改变以及离子通道和细胞间间隙连接的重塑。本论文的主要目的是使用心肌的亚细胞计算机模型来确定细胞微结构(如细胞几何形状和细胞间间隙连接)对心肌波传播的影响。恒定的单元长/宽比对传导速度影响很小。结果不取决于间隙连接分布和电导率,或组织结构的细节。其他参数保持不变,长度/宽度可以很好地预测传播速度和各向异性比率。这些结果表明,在确定传播波的传导速度时,细胞的形状比细胞的大小更重要。;我们还发现,由于细胞几何结构中的空间异质性或间隙连接电导导致结构异质性导致传导阻滞(心律不齐的前兆) )。细胞的几何形状和间隙连接电导率(以及其他因素)决定了组织空间常数。当波传播到具有较大空间常数(增加约40--50%)的区域时,发生传导阻滞。随着细胞长度/宽度比例的增加,组织空间常数对细胞几何形状和间隙连接电导的变化不太敏感。结果,具有更多伸长的细胞(即更高的长/宽比)的组织结构对由细胞几何形状和间隙连接电导引起的结构异质性较不敏感。这一发现可能对组织工程和心脏组织的设计具有重要意义。

著录项

  • 作者

    Toure, Amadou.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号