首页> 美国卫生研究院文献>PLoS Computational Biology >Broadband Criticality of Human Brain Network Synchronization
【2h】

Broadband Criticality of Human Brain Network Synchronization

机译:人脑网络同步的宽带重要性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological) processes, and the lability of global synchronization of a (brain functional) network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal “avalanches” previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05–0.11 to 62.5–125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth.
机译:自组织临界度是人脑动力学的一种有吸引力的模型,但是几乎没有直接证据表明其存在于通过神经影像测量的大规模系统中。通常,关键系统与分形或幂律定标,空间和时间的远距离关联以及响应外部输入的快速重新配置有关。在这里,我们考虑相位同步的两种度量:锁相间隔或一对(神经生理学)过程之间耦合的持续时间,以及(脑功能)网络的全局同步的不稳定性。使用显示复杂动力学的两个机械上不同的系统(伊辛模型和仓本模型)的计算仿真,我们显示出这两个同步度量具有幂律概率分布,特别是当这些系统处于临界状态时。然后,我们展示了正常MRI在静息状态下记录的功能性MRI和脑磁图数据中成对和全局同步度量的幂律定标。这些结果强烈表明,人脑功能系统处于动态临界状态的内生状态,其特征在于:延长的锁相时间和全局同步状态发生较大的快速变化(类似于神经元)的概率大于随机概率蜂窝系统中先前描述的“雪崩”。此外,关键动力学的证据在以0.05-0.11至62.5-125 Hz的频率间隔运行的神经生理系统中得到了一致的确认,从而证实了关键性是人脑功能网络组织在大脑生理带宽中所有频率间隔处的一种特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号