首页> 美国卫生研究院文献>PLoS Computational Biology >Modeling Networks of Coupled Enzymatic Reactions Using the Total Quasi-Steady State Approximation
【2h】

Modeling Networks of Coupled Enzymatic Reactions Using the Total Quasi-Steady State Approximation

机译:使用总准稳态近似建模耦合酶反应的网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis–Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme–substrate complex (C) is much less than the free substrate concentration (S 0). However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S 0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S 0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter–Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter–Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1) it unveils the modular structure of the enzymatic reactions, (2) it suggests a simple algorithm to formulate correct kinetic equations, and (3) contrary to classical Michaelis–Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.
机译:在代谢网络中,代谢产物通常比催化其相互转化的酶要过量,因此使用米氏(Michaelis-Menten)速率定律描述这些反应的速率是完全正确的。该速率定律假设酶-底物复合物(C)的浓度比游离底物浓度(S 0)小得多。但是,在蛋白质相互作用网络中,酶和底物都是可比较浓度的蛋白质,相对于S 0忽略C是无效的。 Borghans,DeBoer和Segel提出了另一种酶动力学描述,当C等于S 0时是有效的。将总准稳态近似称为耦合酶反应网络。首先,当酶和底物的浓度相当时,我们分析了一个孤立的Goldbeter-Koshland开关。然后,以控制细胞周期进程的分子网络的真实例子为基础,我们将两个和三个Goldbeter-Koshland开关耦合在一起,以研究反馈对蛋白激酶和磷酸酶网络的影响。我们的分析表明,总准稳态近似为蛋白质相互作用网络提供了出色的动力学形式,因为(1)揭示了酶促反应的模块结构,(2)提出了一种简单的算法来公式化正确的动力学方程,并且(3)与经典的米利斯-门腾动力学相反,它成功地从质和量上忠实地再现了网络的动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号