首页> 美国卫生研究院文献>PLoS Computational Biology >Stochastic Simulations on the Reliability of Action Potential Propagation in Thin Axons
【2h】

Stochastic Simulations on the Reliability of Action Potential Propagation in Thin Axons

机译:细轴突中动作电位传播可靠性的随机模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is generally assumed that axons use action potentials (APs) to transmit information fast and reliably to synapses. Yet, the reliability of transmission along fibers below 0.5 μm diameter, such as cortical and cerebellar axons, is unknown. Using detailed models of rodent cortical and squid axons and stochastic simulations, we show how conduction along such thin axons is affected by the probabilistic nature of voltage-gated ion channels (channel noise). We identify four distinct effects that corrupt propagating spike trains in thin axons: spikes were added, deleted, jittered, or split into groups depending upon the temporal pattern of spikes. Additional APs may appear spontaneously; however, APs in general seldom fail (<1%). Spike timing is jittered on the order of milliseconds over distances of millimeters, as conduction velocity fluctuates in two ways. First, variability in the number of Na channels opening in the early rising phase of the AP cause propagation speed to fluctuate gradually. Second, a novel mode of AP propagation (stochastic microsaltatory conduction), where the AP leaps ahead toward spontaneously formed clusters of open Na channels, produces random discrete jumps in spike time reliability. The combined effect of these two mechanisms depends on the pattern of spikes. Our results show that axonal variability is a general problem and should be taken into account when considering both neural coding and the reliability of synaptic transmission in densely connected cortical networks, where small synapses are typically innervated by thin axons. In contrast we find that thicker axons above 0.5 μm diameter are reliable.
机译:通常假定轴突使用动作电位(AP)将信息快速可靠地传递给突触。但是,沿直径小于0.5μm的纤维(例如皮质和小脑轴突)传输的可靠性尚不清楚。通过使用啮齿动物的皮质和鱿鱼轴突的详细模型以及随机模拟,我们展示了沿这种细轴突的传导如何受到电压门控离子通道(通道噪声)的概率性质的影响。我们确定了破坏细轴突中传播的尖峰序列的四种不同效应:根据尖峰的时间模式,尖峰被添加,删除,抖动或分成几组。其他AP可能会自发出现;但是,AP通常很少失败(<1%)。由于传导速度以两种方式波动,因此在毫米的距离上,尖峰时间的抖动约为毫秒。首先,在AP的早期上升阶段打开的Na通道数量的变化会导致传播速度逐渐波动。第二,一种新型的AP传播模式(随机微盐导通),其中AP朝着开放的Na通道自发形成的簇前进,从而在尖峰时间可靠性上产生随机的离散跳跃。这两种机制的综合效果取决于尖峰的模式。我们的研究结果表明,轴突变异性是一个普遍的问题,在同时考虑神经编码和紧密连接的皮层网络中突触传递的可靠性时应予以考虑,在这些网络中,细突触通常由细轴突支配。相反,我们发现直径大于0.5μm的较厚轴突是可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号