首页> 美国卫生研究院文献>PLoS Biology >Design Principles of the Yeast G1/S Switch
【2h】

Design Principles of the Yeast G1/S Switch

机译:酵母G1 / S交换机的设计原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A hallmark of the G1/S transition in budding yeast cell cycle is the proteolytic degradation of the B-type cyclin-Cdk stoichiometric inhibitor Sic1. Deleting SIC1 or altering Sic1 degradation dynamics increases genomic instability. Certain key facts about the parts of the G1/S circuitry are established: phosphorylation of Sic1 on multiple sites is necessary for its destruction, and both the upstream kinase Cln1/2-Cdk1 and the downstream kinase Clb5/6-Cdk1 can phosphorylate Sic1 in vitro with varied specificity, cooperativity, and processivity. However, how the system works as a whole is still controversial due to discrepancies between in vitro, in vivo, and theoretical studies. Here, by monitoring Sic1 destruction in real time in individual cells under various perturbations to the system, we provide a clear picture of how the circuitry functions as a switch in vivo. We show that Cln1/2-Cdk1 sets the proper timing of Sic1 destruction, but does not contribute to its destruction speed; thus, it acts only as a trigger. Sic1's inhibition target Clb5/6-Cdk1 controls the speed of Sic1 destruction through a double-negative feedback loop, ensuring a robust all-or-none transition for Clb5/6-Cdk1 activity. Furthermore, we demonstrate that the degradation of a single-phosphosite mutant of Sic1 is rapid and switch-like, just as the wild-type form. Our mathematical model confirms our understanding of the circuit and demonstrates that the substrate sharing between the two kinases is not a redundancy but a part of the design to overcome the trade-off between the timing and sharpness of Sic1 degradation. Our study provides direct mechanistic insight into the design features underlying the yeast G1/S switch.
机译:在发芽的酵母细胞周期中G1 / S过渡的标志是B型细胞周期蛋白Cdk化学计量抑制剂Sic1的蛋白水解降解。删除SIC1或更改Sic1降解动力学会增加基因组不稳定性。建立了有关G1 / S电路部分的某些关键事实:Sic1在多个位点的磷酸化是其破坏所必需的,上游激酶Cln1 / 2-Cdk1和下游激酶Clb5 / 6-Cdk1均可磷酸化Sic1。具有不同的特异性,协同性和持续性的体外。但是,由于体外,体内和理论研究之间的差异,该系统作为一个整体的工作方式仍存在争议。在这里,通过实时监视系统中各种扰动下单个细胞中Sic1的破坏,我们清楚地了解了电路如何在体内起开关的作用。我们表明,Cln1 / 2-Cdk1设置了Sic1破坏的适当时机,但对它的破坏速度没有帮助;因此,它仅充当触发器。 Sic1的抑制靶标Clb5 / 6-Cdk1通过双负反馈回路控制Sic1破坏的速度,从而确保了Clb5 / 6-Cdk1活性的稳健的全有或全无过渡。此外,我们证明了Sic1的单磷酸突变体的降解是快速的,并且是开关状的,就像野生型一样。我们的数学模型证实了我们对电路的理解,并证明了两种激酶之间的底物共享不是冗余,而是克服Sic1降解时间和清晰度之间权衡取舍的设计的一部分。我们的研究为酵母G1 / S开关的设计特征提供了直接的机械见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号