首页> 美国卫生研究院文献>PLoS Biology >Coupled Motions Direct Electrons along Human Microsomal P450 Chains
【2h】

Coupled Motions Direct Electrons along Human Microsomal P450 Chains

机译:沿人体微粒体P450链的直接电子耦合运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR) to all microsomal cytochrome P450s (CYPs). Our hypothesis is that tight coupling of motion with enzyme chemistry can signal “ready and waiting” states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals “ready and waiting” conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron transfer along complex redox chains.
机译:蛋白质结构域运动通常与生物电子转移有关,但运动的一般意义尚不清楚。运动与电子从人细胞色素P450还原酶(CPR)到所有微粒体细胞色素P450(CYP)的转移有关。我们的假设是,运动与酶化学作用的紧密结合可以发出信号,指示电子从CPR向下游CYP转移的“准备和等待”状态,并支持跨复杂氧化还原链的矢量电子转移。我们开发了一种新颖的方法来研究催化过程中动态变化的时间依赖性,该变化报告了CPR构象状态的变化。 FRET与CPR中电子转移的停流研究有关,该研究在酶表面包含供体-受体荧光团。 CPR的打开和关闭状态与催化循环中的关键步骤相关,这证明了氧化还原化学和NADPH结合如何驱动酶的连续打开和关闭。具体而言,我们提供的证据表明,CPR中黄素部分的减少会导致CPR打开,而配体结合会导致CPR关闭。创建了一个动态反应周期,其中CPR通过采用闭合状态来优化黄素辅因子之间的内部电子传递,并通过采用更开放的状态向伴侣CYP酶发出“准备和等待”构象信号。酶运动的这种复杂的,暂时的控制用于催化从NADPH→FAD→FMN→血红素的定向电子转移,从而促进所有微粒体P450催化的反应。对CPR更广泛的生物学功能至关重要的运动与人NADPH-CPR-CYP氧化还原链中的酶化学紧密相关。光是氧化还原化学就足以驱动功能上必要的大规模构象变化,这是非常显着的。我们的研究不是依靠随机的构象采样,而是强调了运动与酶化学的紧密耦合,以使矢量电子沿着复杂的氧化还原链转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号