首页> 美国卫生研究院文献>PLoS Biology >Uncoiling Mechanics of Escherichia coli Type I Fimbriae Are Optimized for Catch Bonds
【2h】

Uncoiling Mechanics of Escherichia coli Type I Fimbriae Are Optimized for Catch Bonds

机译:大肠杆菌I型菌毛的开卷力学针对捕获键进行了优化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We determined whether the molecular structures through which force is applied to receptor–ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3–1.5 μm in length) built from a helically coiled structural subunit, FimA, and an adhesive subunit, FimH, incorporated at the fimbrial tip. Previously reported data suggest that FimH binds to mannosylated ligands on the surfaces of host cells via catch bonds that are enhanced by the shear-originated tensile force. To understand whether the mechanical properties of the fimbrial rod regulate the stability of the FimH–mannose bond, we pulled the fimbriae via a mannosylated tip of an atomic force microscope. Individual fimbriae rapidly elongate for up to 10 μm at forces above 60 pN and rapidly contract again at forces below 25 pN. At intermediate forces, fimbriae change length more slowly, and discrete 5.0 ± 0.3–nm changes in length can be observed, consistent with uncoiling and coiling of the helical quaternary structure of one FimA subunit at a time. The force range at which fimbriae are relatively stable in length is the same as the optimal force range at which FimH–mannose bonds are longest lived. Higher or lower forces, which cause shorter bond lifetimes, cause rapid length changes in the fimbria that help maintain force at the optimal range for sustaining the FimH–mannose interaction. The modulation of force and the rate at which it is transmitted from the bacterial cell to the adhesive catch bond present a novel physiological role for the fimbrial rod in bacterial host cell adhesion. This suggests that the mechanical properties of the fimbrial shaft have codeveloped to optimize the stability of the terminal adhesive under flow.
机译:我们确定是否对通过力作用于受体-配体对的分子结构进行了优化,以优化流动条件下的细胞粘附。我们的模型系统大肠埃希氏大肠杆菌(Escherichia coli)的黏性系链是I型菌毛,它固定在大多数大肠杆菌菌株的外膜上。它们由一根纤维杆(长度为0.3-1.5μm)组成,该杆由螺旋状盘绕的结构亚基FimA和结合在纤维尖端的粘合剂亚基FimH组成。先前报道的数据表明,FimH通过捕捉键与宿主细胞表面的甘露糖基化配体结合,该捕捉键通过剪切力产生的拉力得以增强。为了了解纤维棒的机械性能是否调节FimH-甘露糖键的稳定性,我们通过原子力显微镜的甘露糖基化末端拉动了纤维。单个菌毛在60 pN以上的力下会迅速伸长达10μm,在25 pN以下的力下会再次迅速收缩。在中等作用力下,菌毛的长度变化更慢,并且观察到离散的5.0±0.3–nm长度变化,与一次打开一个FimA亚基的螺旋四元结构的卷曲和卷曲相一致。菌毛长度相对稳定的作用力范围与FimH-甘露糖键寿命最长的最佳作用力范围相同。较高或较低的力会导致键的寿命缩短,从而导致菌毛的长度快速变化,从而有助于将力维持在维持FimH-甘露糖相互作用的最佳范围内。力的调节和它从细菌细胞传递到粘着剂捕获键的速率为纤维棒在细菌宿主细胞粘附中提供了新的生理作用。这表明,纤维轴的机械性能已经共同开发出来,可以优化终端胶在流动状态下的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号