首页> 美国卫生研究院文献>Cognitive Neurodynamics >Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures
【2h】

Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures

机译:皮质网络中受空间限制的自适应重新布线创建了空间模块化的小世界体系结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.
机译:皮质功能和解剖网络中的模块化小世界拓扑非常适合作为信息处理体系结构。模型研究表明这种结构是适应性产生的。它是根据正在进行的振荡神经活动中的同步模式通过重新连接网络连接而出现的。但是,为了提高此类模型在皮质中的适用性,需要考虑皮质连通性的空间特性,而以前人们一直对此予以忽略。为此,我们考虑通过将网络嵌入到物理空间来赋予其度量。我们提供了具有空间距离函数和相应的空间局部重布线偏差的自适应重布线模型。受空间限制的自适应重新布线原理能够将不断发展的网络拓扑引导到较小的世界状态,甚至比没有空间限制时更加一致。局部偏置的自适应重新布线导致连接结构的空间布局,其中拓扑隔离的模块对应于空间隔离的区域,并且这些区域通过远程连接链接在一起。因此,局部偏置的自适应重布线的原理可以解释拓扑连接结构和大规模皮质结构中神经元单元之间连接的空间分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号