首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines
【2h】

Exponentially Modified Peak Functions in Biomedical Sciences and Related Disciplines

机译:生物医学和相关学科中的指数修饰峰函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many cases relevant to biomedicine, a variable time, which features a certain distribution, is required for objects of interest to pass from an initial to an intermediate state, out of which they exit at random to a final state. In such cases, the distribution of variable times between exiting the initial and entering the final state must conform to the convolution of the first distribution and a negative exponential distribution. A common example is the exponentially modified Gaussian (EMG), which is widely used in chromatography for peak analysis and is long known as ex-Gaussian in psychophysiology, where it is applied to times from stimulus to response. In molecular and cell biology, EMG, compared with commonly used simple distributions, such as lognormal, gamma, and Wald, provides better fits to the variabilities of times between consecutive cell divisions and transcriptional bursts and has more straightforwardly interpreted parameters. However, since the range of definition of the Gaussian component of EMG is unlimited, data approximation with EMG may extend to the negative domain. This extension may seem negligible when the coefficient of variance of the Gaussian component is small but becomes considerable when the coefficient increases. Therefore, although in many cases an EMG may be an acceptable approximation of data, an exponentially modified nonnegative peak function, such as gamma-distribution, can make more sense in physical terms. In the present short review, EMG and exponentially modified gamma-distribution (EMGD) are discussed with regard to their applicability to data on cell cycle, gene expression, physiological responses to stimuli, and other cases, some of which may be interpreted as decision-making. In practical fitting terms, EMG and EMGD are equivalent in outperforming other functions; however, when the coefficient of variance of the Gaussian component of EMG is greater than ca. 0.4, EMGD is preferable.
机译:在许多与生物医学有关的情况下,需要使目标物体从初始状态过渡到中间状态的可变时间,该可变时间具有一定的分布,然后从目标状态随机过渡到最终状态。在这种情况下,退出初始状态和进入最终状态之间的可变时间分布必须符合第一分布和负指数分布的卷积。一个常见的例子是指数修饰的高斯(EMG),它广泛用于色谱分析中的峰分析,并且在心理生理学中长期被称为前高斯,它用于从刺激到反应的时间。在分子和细胞生物学中,与常用的简单分布(例如对数正态,伽马和Wald)相比,EMG可以更好地拟合连续细胞分裂和转录爆发之间的时间变化,并具有更直接的解释参数。但是,由于EMG的高斯分量的定义范围是无限的,因此使用EMG进行数据近似可以扩展到负域。当高斯分量的方差系数很小时,这种扩展似乎可以忽略不计,但是当系数增加时,这种扩展变得相当大。因此,尽管在许多情况下,EMG可能是可接受的数据近似值,但从物理角度来看,指数修饰的非负峰函数(例如伽马分布)可能更有意义。在本篇简短的综述中,我们将就肌电图和指数修饰的伽马分布(EMGD)在细胞周期,基因表达,对刺激的生理反应以及其他情况下的数据适用性进行了讨论,其中一些情况可以解释为决策-制造。在实际应用中,EMG和EMGD在性能上胜于其他功能。但是,当EMG的高斯分量的方差系数大于ca时。 0.4,EMGD是优选的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号