首页> 美国卫生研究院文献>eNeuro >Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation In Vivo
【2h】

Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation In Vivo

机译:SynDIG1的损失减少兴奋性突触成熟但不能形成体内。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modification of the strength of excitatory synaptic connections is a fundamental mechanism by which neural circuits are refined during development and learning. Synapse Differentiation Induced Gene 1 (SynDIG1) has been shown to play a key role in regulating synaptic strength in vitro. Here, we investigated the role of SynDIG1 in vivo in mice with a disruption of the SynDIG1 gene rather than use an alternate loxP-flanked conditional mutant that we find retains a partial protein product. The gene-trap insertion with a reporter cassette mutant mice shows that the SynDIG1 promoter is active during embryogenesis in the retina with some activity in the brain, and postnatally in the mouse hippocampus, cortex, hindbrain, and spinal cord. Ultrastructural analysis of the hippocampal CA1 region shows a decrease in the average PSD length of synapses and a decrease in the number of synapses with a mature phenotype. Intriguingly, the total synapse number appears to be increased in SynDIG1 mutant mice. Electrophysiological analyses show a decrease in AMPA and NMDA receptor function in SynDIG1-deficient hippocampal neurons. Glutamate stimulation of individual dendritic spines in hippocampal slices from SynDIG1-deficient mice reveals increased short-term structural plasticity. Notably, the overall levels of PSD-95 or glutamate receptors enriched in postsynaptic biochemical fractions remain unaltered; however, activity-dependent synapse development is strongly compromised upon the loss of SynDIG1, supporting its importance for excitatory synapse maturation. Together, these data are consistent with a model in which SynDIG1 regulates the maturation of excitatory synapse structure and function in the mouse hippocampus in vivo.
机译:兴奋性突触连接强度的改变是在发育和学习过程中完善神经回路的基本机制。突触分化诱导基因1(SynDIG1)已显示在体​​外调节突触强度中起关键作用。在这里,我们研究了SynDIG1在体内对SynDIG1基因的破坏,而不是使用我们发现保留了部分蛋白质产物的loxP侧翼条件突变体的替代作用。报告基因盒突变小鼠的基因陷阱插入显示,SynDIG1启动子在视网膜胚发生过程中具有活性,在大脑中具有一定活性,在出生后在小鼠海马,皮质,后脑和脊髓中具有一定活性。海马CA1区的超微结构分析显示,突触的平均PSD长度减少,而具有成熟表型的突触数量减少。有趣的是,在SynDIG1突变小鼠中,总突触数量似乎增加了。电生理分析表明,SynDIG1缺陷型海马神经元中AMPA和NMDA受体功能降低。谷氨酸刺激SynDIG1缺陷小鼠海马切片中的单个树突棘揭示了增加的短期结构可塑性。值得注意的是,在突触后生化部分富集的PSD-95或谷氨酸受体的总体水平保持不变。但是,SynDIG1的丧失会严重损害活动依赖性突触的发育,从而支持其对兴奋性突触成熟的重要性。总之,这些数据与其中SynDIG1调节小鼠海马体内兴奋性突触结构和功能成熟的模型一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号