首页> 美国卫生研究院文献>The EMBO Journal >The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia.
【2h】

The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia.

机译:烟草对烟碱胁迫中锰超氧化物歧化酶的诱导。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Superoxide dismutases (SODs) are metalloproteins that catalyse the dismutation of superoxide radicals to oxygen and hydrogen peroxide. The enzyme has been found in all aerobic organisms examined, where it plays a major role in the defence against toxic reduced oxygen species which are generated in many biological oxidations. Here we report the complete primary structure of a plant manganese superoxide dismutase (MnSOD), deduced from a cDNA clone of Nicotiana plumbaginifolia. The plant protein is highly homologous to MnSODs from other organisms and also contains an N-terminal leader sequence resembling a transit peptide for mitochondrial targeting. The location of the mature protein within the mitochondria has been demonstrated by subcellular fractionation experiments. We have analysed the expression profile of this MnSOD and found that it is dramatically induced during stress conditions, most notably in tissue culture as a result of sugar metabolism and also as part of the pathogenesis response of the plant, being induced by ethylene, salicylic acid, and Pseudomonas syringae infection. This induction is always accompanied by an increase in cytochrome oxidase activity, which suggests a specific protective role for MnSOD during conditions of increased mitochondrial respiration.
机译:超氧化物歧化酶(SOD)是金属蛋白,可催化将超氧化物自由基歧化为氧和过氧化氢。在所有需氧生物中都发现了这种酶,在抵抗许多生物氧化过程中产生的有毒还原性氧的防御中起着重要作用。在这里,我们报告植物锰超氧化物歧化酶(MnSOD)的完整的一级结构,该结构是从Nicotiana plumbaginifolia的cDNA克隆推导出来的。该植物蛋白与其他生物的MnSOD具有高度同源性,并且还包含一个N末端前导序列,类似于用于线粒体靶向的转运肽。通过亚细胞分级分离实验证明了成熟蛋白在线粒体内的位置。我们已经分析了这种MnSOD的表达特征,发现它在胁迫条件下被强烈诱导,最显着的是在组织培养中由于糖代谢以及植物,由乙烯,水杨酸诱导的发病机理,和丁香假单胞菌感染。这种诱导总是伴随着细胞色素氧化酶活性的增加,这表明在线粒体呼吸增加的条件下,MnSOD具有特殊的保护作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号