首页> 美国卫生研究院文献>Experimental Biology and Medicine >Featured Article: TGF-β1 dominates extracellular matrix rigidity forinducing differentiation of human cardiac fibroblasts tomyofibroblasts
【2h】

Featured Article: TGF-β1 dominates extracellular matrix rigidity forinducing differentiation of human cardiac fibroblasts tomyofibroblasts

机译:特色文章:TGF-β1主导了细胞外基质的刚性诱导人心脏成纤维细胞分化为肌成纤维细胞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cardiac fibroblasts and their activated derivatives, myofibroblasts, play a critical role in wound healing after myocardial injury and often contribute to long-term pathological outcomes, such as excessive fibrosis. Thus, defining the microenvironmental factors that regulate the phenotype of cardiac fibroblasts and myofibroblasts could lead to new therapeutic strategies. Both chemical and biomechanical cues have previously been shown to induce myofibroblast differentiation in many organs and species. For example, transforming growth factor beta 1, a cytokine secreted by neutrophils, and rigid extracellular matrix environments have both been shown to promote differentiation. However, the relative contributions of transforming growth factor beta 1 and extracellular matrix rigidity, two hallmark cues in many pathological myocardial microenvironments, to the phenotype of human cardiac fibroblasts are unclear. We hypothesized that transforming growth factor beta 1 and rigid extracellular matrix environments would potentially have a synergistic effect on the differentiation of human cardiac fibroblasts to myofibroblasts. To test this, we seeded primary human adult cardiac fibroblasts onto coverslips coated with polydimethylsiloxane of various elastic moduli, introduced transforming growthfactor beta 1, and longitudinally quantified cell phenotype by measuringexpression of α-smooth muscle actin, the most robust indicator ofmyofibroblasts. Our data indicate that, although extracellular matrix rigidityinfluenced differentiation after one day of transforming growth factor beta 1treatment, ultimately transforming growth factor beta 1 superseded extracellularmatrix rigidity as the primary regulator of myofibroblast differentiation. Wealso measured expression of POSTN, FAP, andFSP1, proposed secondary indicators offibroblast/myofibroblast phenotypes. Although these genes partially trended withα-smooth muscle actin expression, they were relatively inconsistent. Finally, wedemonstrated that activated myofibroblasts incompletely revert to a fibroblastphenotype after they are re-plated onto new surfaces without transforming growthfactor beta 1, suggesting differentiation is partially reversible. Our resultsprovide new insights into how microenvironmental cues affect human cardiacfibroblast differentiation in the context of myocardial pathology, which isimportant for identifying effective therapeutic targets and dictating supportingcell phenotypes for engineered human cardiac disease models.Impact statementHeart disease is the leading cause of death worldwide. Many forms of heartdisease are associated with fibrosis, which increases extracellular matrix(ECM) rigidity and compromises cardiac output. Fibrotic tissue issynthesized primarily by myofibroblasts differentiated from fibroblasts.Thus, defining the cues that regulate myofibroblast differentiation isimportant for understanding the mechanisms of fibrosis. However, previousstudies have focused on non-human cardiac fibroblasts and have not testedcombinations of chemical and mechanical cues. We tested the effects ofTGF-β1, a cytokine secreted by immune cells after injury, and ECM rigidityon the differentiation of human cardiac fibroblasts to myofibroblasts. Ourresults indicate that differentiation is initially influenced by ECMrigidity, but is ultimately superseded by TGF-β1. This suggests thattargeting TGF-β signaling pathways in cardiac fibroblasts may havetherapeutic potential for attenuating fibrosis, even in rigidmicroenvironments. Additionally, our approach can be leveraged to engineermore precise multi-cellular human cardiac tissue models.
机译:心肌成纤维细胞及其活化衍生物肌成纤维细胞在心肌损伤后的伤口愈合中起关键作用,并经常导致长期的病理结果,例如过度纤维化。因此,定义调节心脏成纤维细胞和成肌纤维细胞表型的微环境因素可能会导致新的治疗策略。先前已显示化学和生物力学提示均可在许多器官和物种中诱导成肌纤维细胞分化。例如,转化生长因子β1(嗜中性粒细胞分泌的细胞因子)和刚性细胞外基质环境均已显示出促进分化的作用。然而,尚不清楚转化生长因子β1和细胞外基质刚性(在许多病理性心肌微环境中的两个标志)对人心脏成纤维细胞表型的相对贡献。我们假设转化生长因子β1和刚性细胞外基质环境可能会对人类心脏成纤维细胞向肌成纤维细胞的分化产生协同作用。为了测试这一点,我们将原代人类成年心脏成纤维细胞播种到盖有各种弹性模量的聚二甲基硅氧烷的盖玻片上,引入了转化生长β1因子和通过测量纵向量化的细胞表型α-平滑肌肌动蛋白的表达,是最有力的指标肌成纤维细胞。我们的数据表明,尽管细胞外基质的刚性转化生长因子β1一天后影响分化治疗,最终转化生长因子β1取代细胞外基质刚性作为成肌纤维细胞分化的主要调节剂。我们还测量了POSTN,FAP和FSP1,建议的二级指标成纤维细胞/成肌纤维细胞表型。虽然这些基因部分趋势与α-平滑肌肌动蛋白的表达相对不一致。最后,我们证明激活的成肌纤维细胞不完全还原为成纤维细胞将它们重新铺在新表面上而不改变生长后的表型β1因子,表明分化是部分可逆的。我们的结果提供有关微环境线索如何影响人类心脏的新见解心肌病理中的成纤维细胞分化是对于确定有效的治疗目标和决定支持至关重要工程人类心脏病模型的细胞表型。影响陈述心脏疾病是全球主要的死亡原因。多种形式的心疾病与纤维化有关,纤维化增加细胞外基质(ECM)僵硬并损害心输出量。纤维化组织是主要由与成纤维细胞不同的成肌纤维细胞合成。因此,定义调节成肌纤维细胞分化的线索是对于了解纤维化的机制很重要。但是,以前研究集中于非人心脏成纤维细胞,尚未测试化学和机械提示的组合。我们测试了损伤后免疫细胞分泌的细胞因子TGF-β1和ECM刚性人心脏成纤维细胞向肌成纤维细胞分化的研究我们的结果表明,分化最初受ECM影响刚性,但最终被TGF-β1取代。这表明心脏成纤维细胞中靶向TGF-β信号转导途径可能具有减轻纤维化的治疗潜力,即使在坚硬的情况下微环境。此外,我们的方法可以被利用来设计更精确的多细胞人类心脏组织模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号