首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny
【2h】

Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny

机译:建造一只鸟:鸟类发育过程中机翼辅助倾斜跑步的肌肉骨骼建模和仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring “flight adaptations,” recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (Alectoris chukar). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs.
机译:拍打飞行是最耗力的运动方式,与现存成年鸟类的一系列解剖学专业相关。相比之下,许多发育中的鸟类在获得“飞行适应”之前就利用其前肢来适应环境,招募其发育中的翅膀以不断提高腿部性能,甚至在某些情况下会飞翔。解剖学发展如何影响这些运动行为?使用纯粹的经验方法来分离对机翼性能的形态学贡献非常具有挑战性。但是,肌肉骨骼建模和仿真技术可以结合经验数据,通过单独操纵解剖参数并估计其对运动的影响来明确检查形态变化的功能后果。为了评估解剖学上的遗传学变化如何影响运动能力,我们将现有的肌肉形态学,骨骼运动学和气动动力产生的经验数据与先进的生物力学建模和模拟技术相结合,以分析前社会地面鸟(Alectoris chukar)的胸肢功能的个体发育)。使用这些新开发的肌肉骨骼模型对机翼辅助的倾斜跑步(WAIR)进行的模拟表明,未成熟的鸟类的肌肉容量过大,并且受到羽毛形态的限制更大,这可能是因为羽毛生长得比骨骼和肌肉更快并且具有不同的生长方式。这些结果通过(i)建立肌肉和空气动力如何与骨骼系统相互作用以在变态的幼鸟中产生运动,以及(ii)提供基准来为鸟类运动的发生提供重要的信息。遍及现存物种和已灭绝的兽脚亚目恐龙中的其他运动行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号