首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression
【2h】

A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression

机译:基于多尺度Agent的肝纤维化进展计算机模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl4). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl4-treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl4-injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant insights into liver fibrosis.
机译:慢性肝炎涉及炎症和机械影响的复杂相互作用,最终表现为肝纤维化的特征性组织病理学。我们创建了肝脏组织的基于代理的模型(ABM),以便通过计算检查肝脏炎症的后果。我们的肝纤维化ABM(LFABM)由文献衍生的规则组成,描述了化学损伤的肝脏中炎症和纤维化的分子和组织病理学方面。肝细胞被建模为六角形小叶内的物质。损伤会触发炎症反应,从而导致局部库普弗细胞活化并从循环中募集单核细胞。门脉成纤维细胞和肝星状细胞被炎症产物局部激活。模拟中的各种试剂受阈值以上的促炎和抗炎细胞因子以及与损伤相关的分子模式分子的调节。模拟从慢性炎症发展到胶原蛋白沉积,表现为门静脉周围纤维化,然后桥接纤维化,最终破坏规则的小叶结构。在用四氯化碳(CCl4)处理的大鼠的肝脏切片中观察到的ABM表现出关键的组织病理学特征。与临床弹性成像文献和发表在CCl4处理的大鼠中的研究一致,对肝小叶的计算机模拟“张力测试”预测组织刚度总体增加。治疗模拟表明中和肿瘤坏死因子α与增强M2 Kupffer细胞具有不同的抗纤维化作用。我们得出结论,物理力的结构骨架上的肝脏炎症的计算模型可以概括CCl4损伤的肝脏的关键组织病理学和宏观特性。这种将分子和化学机械刺激联系起来的多尺度方法使得该模型可用于获得对肝纤维化的翻译相关见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号