首页> 美国卫生研究院文献>Frontiers in Cellular Neuroscience >Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry
【2h】

Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry

机译:扩展我们的世界观:单胺如何将上下文引入脑循环

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient solution to adapt the activation of individual muscle groups during locomotion to changing conditions such as ground compliance and carried load. Although it is not unconceivable that spinal ionotropic circuitry could achieve scaling by itself, neurophysiological findings emphasize that this is a unique functionality of metabotropic effects since recent recordings in sensorimotor circuitry conflict with mechanisms proposed for ionotropic scaling in other CNS areas. We substantiate that precision scaling of ionotropic subcircuits is a main functional principle for many monoaminergic projections throughout the CNS, implying that the monoaminergic circuitry forms a network within the network composed of the ionotropic circuitry. Thereby, we provide an early-level interpretation of the mechanisms of psychopharmacological drugs that interfere with the monoaminergic systems.
机译:单胺被认为是支配CNS功能的地形和时间精确电离性电路的弥散代谢型神经调节剂。它们的功能障碍与运动和认知障碍密切相关,但对其行为和认知过程的功能了解甚少。在本文中,这种单胺能功能的原理被概念化为运动控制。我们发现腹侧脊髓中的血清素能系统缩放了离子电信号,并显示了与离子电子电路的差分增益调制相符的地形顺序。子电路可以基于终身学习来共同发出有关世界预测模型的信号,而它们的差分比例则可以在几百毫秒的快速时间内根据感官输入不断调整这些模型,以适应变化的机械环境。仿生机器人的控制理论表明,这种精确的缩放比例是一种有效的资源节约型解决方案,可以使运动过程中各个肌肉群的激活适应不断变化的条件(例如地面柔度和负载)。尽管并不是很难想象脊髓离子电离回路本身就能实现结垢,但是神经生理学的发现强调,这是新陈代谢作用的独特功能,因为近来在感觉运动电路中的记录与在其他CNS领域中提出的离子电离结垢的机制相冲突。我们证实,电离子电路的精确缩放是整个CNS中许多单胺能投影的主要功能原理,这意味着单胺能电路在由电离电路组成的网络内形成了一个网络。因此,我们提供了干扰单胺能系统的心理药物的机制的早期解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号