首页> 美国卫生研究院文献>Frontiers in Cellular Neuroscience >Molecular Mechanisms Underlying Cell Death in Spinal Networks in Relation to Locomotor Activity After Acute Injury in vitro
【2h】

Molecular Mechanisms Underlying Cell Death in Spinal Networks in Relation to Locomotor Activity After Acute Injury in vitro

机译:脊髓网状细胞死亡的分子机制与体外急性损伤后的运动活动有关

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the pathophysiological changes triggered by an acute spinal cord injury is a primary goal to prevent and treat chronic disability with a mechanism-based approach. After the primary phase of rapid cell death at the injury site, secondary damage occurs via autodestruction of unscathed tissue through complex cell-death mechanisms that comprise caspase-dependent and caspase-independent pathways. To devise novel neuroprotective strategies to restore locomotion, it is, therefore, necessary to focus on the death mechanisms of neurons and glia within spinal locomotor networks. To this end, the availability of in vitro preparations of the rodent spinal cord capable of expressing locomotor-like oscillatory patterns recorded electrophysiologically from motoneuron pools offers the novel opportunity to correlate locomotor network function with molecular and histological changes long after an acute experimental lesion. Distinct forms of damage to the in vitro spinal cord, namely excitotoxic stimulation or severe metabolic perturbation (with oxidative stress, hypoxia/aglycemia), can be applied with differential outcome in terms of cell types and functional loss. In either case, cell death is a delayed phenomenon developing over several hours. Neurons are more vulnerable to excitotoxicity and more resistant to metabolic perturbation, while the opposite holds true for glia. Neurons mainly die because of hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) with subsequent DNA damage and mitochondrial energy collapse. Conversely, glial cells die predominantly by apoptosis. It is likely that early neuroprotection against acute spinal injury may require tailor-made drugs targeted to specific cell-death processes of certain cell types within the locomotor circuitry. Furthermore, comparison of network size and function before and after graded injury provides an estimate of the minimal network membership to express the locomotor program.
机译:了解由急性脊髓损伤引发的病理生理变化是采用基于机制的方法预防和治疗慢性残疾的主要目标。在损伤部位快速细胞死亡的初级阶段之后,继发性损伤是通过复杂的细胞死亡机制(包括caspase依赖性和caspase依赖性途径)自动破坏未损伤的组织而发生的。因此,要设计新的神经保护策略来恢复运动,就必须关注脊髓运动网络中神经元和神经胶质的死亡机制。为此,能够表达从运动神经元池电生理学记录的能够表达运动样振荡模式的啮齿动物脊髓的体外制剂的提供,为将运动网络功能与急性实验性病变长期以来的分子和组织学变化相关联提供了新的机会。对体外脊髓的不同形式的损害,即兴奋性毒性刺激或严重的代谢紊乱(具有氧化应激,低氧/低血糖),可以在细胞类型和功能丧失方面获得不同的结果。在任何一种情况下,细胞死亡都是数小时后才出现的延迟现象。神经元更容易受到兴奋性毒性的影响,并且对代谢紊乱具有更强的抵抗力,而神经胶质细胞则相反。神经元死亡的主要原因是聚(ADP-核糖)聚合酶-1(PARP-1)过度活化,随后DNA受损,线粒体能量崩溃。相反,神经胶质细胞主要通过凋亡而死亡。早期针对急性脊髓损伤的神经保护可能需要针对运动回路内某些细胞类型的特定细胞死亡过程的特制药物。此外,分级损伤前后网络大小和功能的比较提供了表达运动程序的最小网络成员的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号