首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >A computational analysis of motor synergies by dynamic response decomposition
【2h】

A computational analysis of motor synergies by dynamic response decomposition

机译:动态响应分解对电机协同作用的计算分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Analyses of experimental data acquired from humans and other vertebrates have suggested that motor commands may emerge from the combination of a limited set of modules. While many studies have focused on physiological aspects of this modularity, in this paper we propose an investigation of its theoretical foundations. We consider the problem of controlling a planar kinematic chain, and we restrict the admissible actuations to linear combinations of a small set of torque profiles (i.e., motor synergies). This scheme is equivalent to the time-varying synergy model, and it is formalized by means of the dynamic response decomposition (DRD). DRD is a general method to generate open-loop controllers for a dynamical system to solve desired tasks, and it can also be used to synthesize effective motor synergies. We show that a control architecture based on synergies can greatly reduce the dimensionality of the control problem, while keeping a good performance level. Our results suggest that in order to realize an effective and low-dimensional controller, synergies should embed features of both the desired tasks and the system dynamics. These characteristics can be achieved by defining synergies as solutions to a representative set of task instances. The required number of synergies increases with the complexity of the desired tasks. However, a possible strategy to keep the number of synergies low is to construct solutions to complex tasks by concatenating synergy-based actuations associated to simple point-to-point movements, with a limited loss of performance. Ultimately, this work supports the feasibility of controlling a non-linear dynamical systems by linear combinations of basic actuations, and illustrates the fundamental relationship between synergies, desired tasks and system dynamics.
机译:对从人类和其他脊椎动物身上获得的实验数据的分析表明,运动命令可能是由有限的一组模块组合而成的。尽管许多研究都集中在这种模块化的生理方面,但在本文中,我们提出了对其模块化理论基础的研究。我们考虑了控制平面运动链的问题,并且将允许的致动限制为一小组转矩分布的线性组合(即电机协同作用)。该方案等效于时变协同模型,并通过动态响应分解(DRD)形式化。 DRD是为动态系统生成开环控制器以解决所需任务的通用方法,它还可用于合成有效的电机协同作用。我们表明基于协同作用的控制体系结构可以大大降低控制问题的维数,同时保持良好的性能水平。我们的结果表明,为了实现有效的低维控制器,协同作用应嵌入所需任务和系统动力学的特征。通过将协同定义为一组代表性任务实例的解决方案,可以实现这些特征。所需协同作用的数量随着所需任务的复杂性而增加。但是,保持协同作用数量少的一种可能策略是通过连接与简单点对点运动相关联的基于协同作用的驱动来构造复杂任务的解决方案,而性能损失有限。最终,这项工作支持了通过基本致动的线性组合来控制非线性动力系统的可行性,并说明了协同作用,所需任务和系统动力学之间的基本关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号