首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >The Interaction of Intrinsic Dynamics and Network Topology in Determining Network Burst Synchrony
【2h】

The Interaction of Intrinsic Dynamics and Network Topology in Determining Network Burst Synchrony

机译:确定网络突发同步的内在动力学与网络拓扑的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The pre-Bötzinger complex (pre-BötC), within the mammalian respiratory brainstem, represents an ideal system for investigating the synchronization properties of complex neuronal circuits via the interaction of cell-type heterogeneity and network connectivity. In isolation, individual respiratory neurons from the pre-BötC may be tonically active, rhythmically bursting, or quiescent. Despite this intrinsic heterogeneity, coupled networks of pre-BötC neurons en bloc engage in synchronized bursting that can drive inspiratory motor neuron activation. The region's connection topology has been recently characterized and features dense clusters of cells with occasional connections between clusters. We investigate how the dynamics of individual neurons (quiescent/bursting/tonic) and the betweenness centrality of neurons’ positions within the network connectivity graph interact to govern network burst synchrony, by simulating heterogeneous networks of computational model pre-BötC neurons. Furthermore, we compare the prevalence and synchrony of bursting across networks constructed with a variety of connection topologies, analyzing the same collection of heterogeneous neurons in small-world, scale-free, random, and regularly structured networks. We find that several measures of network burst synchronization are determined by interactions of network topology with the intrinsic dynamics of neurons at central network positions and by the strengths of synaptic connections between neurons. Surprisingly, despite the functional role of synchronized bursting within the pre-BötC, we find that synchronized network bursting is generally weakest when we use its specific connection topology, which leads to synchrony within clusters but poor coordination across clusters. Overall, our results highlight the relevance of interactions between topology and intrinsic dynamics in shaping the activity of networks and the concerted effects of connectivity patterns and dynamic heterogeneities.
机译:哺乳动物呼吸性脑干内的前柏辛格复合体(pre-BötC)代表了一种通过细胞类型异质性和网络连通性相互作用研究复杂神经元回路同步特性的理想系统。孤立地,来自前BötC的单个呼吸神经元可能在听觉上活跃,有节奏地爆发或静止。尽管存在固有的异质性,但整个BötC神经元的耦合网络仍会参与同步爆发,这可能会驱动吸气运动神经元激活。该区域的连接拓扑最近已被表征,其特征是密集的单元簇,簇之间偶尔有连接。我们通过模拟计算模型BötC之前的神经元的异构网络,研究单个神经元的动力学(静态/爆发/张力)和网络连接图中神经元位置的居中性如何相互作用以控制网络突发同步。此外,我们比较了使用各种连接拓扑构建的网络中爆发的发生率和同步性,分析了小世界,无标度,随机和规则结构的网络中相同集合的异构神经元。我们发现,网络突发同步的几种措施是由网络拓扑与中央网络位置的神经元固有动力学的相互作用以及神经元之间的突触连接强度决定的。出乎意料的是,尽管pre-BötC中的同步突发功能发挥了作用,但我们发现,当我们使用特定的连接拓扑时,同步网络突发通常最弱,这导致集群内部同步,但集群之间的协调性较差。总体而言,我们的结果突出了拓扑和内在动力学之间相互作用对塑造网络活动以及连通性模式和动态异构性的协同作用的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号