首页> 美国卫生研究院文献>Frontiers in Genetics >Adjusting for Batch Effects in DNA Methylation Microarray Data a Lesson Learned
【2h】

Adjusting for Batch Effects in DNA Methylation Microarray Data a Lesson Learned

机译:调整DNA甲基化微阵列数据中的批次效应这是一个教训

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well-known, but frequently overlooked, that low- and high-throughput molecular data may contain batch effects, i.e., systematic technical variation. Confounding of experimental batches with the variable(s) of interest is especially concerning, as a batch effect may then be interpreted as a biologically significant finding. An integral step toward reducing false discovery in molecular data analysis includes inspection for batch effects and accounting for this signal if present. In a 30-sample pilot Illumina Infinium HumanMethylation450 (450k array) experiment, we identified two sources of batch effects: row and chip. Here, we demonstrate two approaches taken to process the 450k data in which an R function, ComBat, was applied to adjust for the non-biological signal. In the “initial analysis,” the application of ComBat to an unbalanced study design resulted in 9,612 and 19,214 significant (FDR < 0.05) DNA methylation differences, despite none present prior to correction. Suspicious of this dramatic change, a “revised processing” included changes to our analysis as well as a greater number of samples, and successfully reduced batch effects without introducing false signal. Our work supports conclusions made by an article previously published in this journal: though the ultimate antidote to batch effects is thoughtful study design, every DNA methylation microarray analysis should inspect, assess and, if necessary, account for batch effects. The analysis experience presented here can serve as a reminder to the broader community to establish research questions a priori, ensure that they match with study design and encourage communication between technicians and analysts.
机译:众所周知但经常被忽视的是,低通量和高通量分子数据可能包含批量效应,即系统的技术变化。实验批次与目标变量的混淆尤其令人担忧,因为批次效应随后可解释为生物学上的重要发现。减少分子数据分析中错误发现的一个不可或缺的步骤包括检查批效应并考虑该信号(如果存在)。在30个样本的Illumina Infinium HumanMethylation450(450k阵列)中,我们确定了批处理效果的两个来源:行和芯片。在这里,我们演示了处理450k数据的两种方法,其中应用了R函数ComBat来调整非生物信号。在“初步分析”中,将ComBat应用于不平衡的研究设计中,尽管校正前均未发现,但仍存在9,612和19,214的显着(FDR <0.05)DNA甲基化差异。怀疑这一巨大变化,“修订处理”包括对我们的分析进行了更改,并增加了样品数量,并成功降低了批次效应,而不会引入错误信号。我们的工作支持先前在该杂志上发表的一篇文章得出的结论:尽管批处理效应的最终解毒剂是经过深思熟虑的研究设计,但每个DNA甲基化微阵列分析都应检查,评估并在必要时说明批处理效应。此处介绍的分析经验可以提醒广大社区确定先验研究问题,确保它们与研究设计相匹配,并鼓励技术人员和分析人员之间进行交流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号