首页> 美国卫生研究院文献>Frontiers in Microbiology >Trait-Based Representation of Biological Nitrification: Model Development Testing and Predicted Community Composition
【2h】

Trait-Based Representation of Biological Nitrification: Model Development Testing and Predicted Community Composition

机译:基于特质的生物硝化表征:模型开发测试和可预测的社区组成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Trait-based microbial models show clear promise as tools to represent the diversity and activity of microorganisms across ecosystem gradients. These models parameterize specific traits that determine the relative fitness of an “organism” in a given environment, and represent the complexity of biological systems across temporal and spatial scales. In this study we introduce a microbial community trait-based modeling framework (MicroTrait) focused on nitrification (MicroTrait-N) that represents the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) using traits related to enzyme kinetics and physiological properties. We used this model to predict nitrifier diversity, ammonia (NH3) oxidation rates, and nitrous oxide (N2O) production across pH, temperature, and substrate gradients. Predicted nitrifier diversity was predominantly determined by temperature and substrate availability, the latter was strongly influenced by pH. The model predicted that transient N2O production rates are maximized by a decoupling of the AOB and NOB communities, resulting in an accumulation and detoxification of nitrite to N2O by AOB. However, cumulative N2O production (over 6 month simulations) is maximized in a system where the relationship between AOB and NOB is maintained. When the reactions uncouple, the AOB become unstable and biomass declines rapidly, resulting in decreased NH3 oxidation and N2O production. We evaluated this model against site level chemical datasets from the interior of Alaska and accurately simulated NH3 oxidation rates and the relative ratio of AOA:AOB biomass. The predicted community structure and activity indicate (a) parameterization of a small number of traits may be sufficient to broadly characterize nitrifying community structure and (b) changing decadal trends in climate and edaphic conditions could impact nitrification rates in ways that are not captured by extant biogeochemical models.
机译:基于特质的微生物模型作为代表微生物在生态系统梯度范围内的多样性和活动的工具,显示出明显的希望。这些模型参数化了特定特征,这些特征决定了给定环境中“有机体”的相对适应性,并代表了跨时空尺度的生物系统的复杂性。在这项研究中,我们介绍了一种基于硝化作用(MicroTrait-N)的基于微生物群落特征的建模框架(MicroTrait-N),它代表了氨氧化细菌(AOB),氨氧化古细菌(AOA)和亚硝酸盐氧化细菌(NOB)使用与酶动力学和生理特性有关的性状。我们使用该模型预测了pH,温度和底物梯度范围内的硝化剂多样性,氨(NH3)氧化速率和一氧化二氮(N2O)产量。硝化剂的预测多样性主要取决于温度和底物的利用率,后者受pH值的强烈影响。该模型预测,通过AOB和NOB群落的解偶联,可将瞬时N2O生产率最大化,从而导致AOB积累亚硝酸盐并将其解毒为N2O。但是,在维持AOB和NOB之间关系的系统中,累积的N2O产量(超过6个月的模拟)最大。当反应解耦时,AOB变得不稳定,生物量迅速下降,从而导致NH3氧化和N2O生成减少。我们针对来自阿拉斯加内部的站点级别化学数据集评估了该模型,并精确模拟了NH3氧化速率和AOA:AOB生物量的相对比率。预测的群落结构和活动表明(a)少量性状的参数化可能足以大致表征硝化群落结构,并且(b)气候和土壤条件变化的年代际趋势可能以现有方法无法捕获的方式影响硝化速率生物地球化学模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号